Mister Exam

Derivative of tanh(lnt)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
tanh(log(t))
$$\tanh{\left(\log{\left(t \right)} \right)}$$
tanh(log(t))
The graph
The first derivative [src]
        2        
1 - tanh (log(t))
-----------------
        t        
$$\frac{1 - \tanh^{2}{\left(\log{\left(t \right)} \right)}}{t}$$
The second derivative [src]
                     /         2        \
(1 + 2*tanh(log(t)))*\-1 + tanh (log(t))/
-----------------------------------------
                     2                   
                    t                    
$$\frac{\left(2 \tanh{\left(\log{\left(t \right)} \right)} + 1\right) \left(\tanh^{2}{\left(\log{\left(t \right)} \right)} - 1\right)}{t^{2}}$$
The third derivative [src]
   /         2        \ /      2                         \
-2*\-1 + tanh (log(t))/*\3*tanh (log(t)) + 3*tanh(log(t))/
----------------------------------------------------------
                             3                            
                            t                             
$$- \frac{2 \left(\tanh^{2}{\left(\log{\left(t \right)} \right)} - 1\right) \left(3 \tanh^{2}{\left(\log{\left(t \right)} \right)} + 3 \tanh{\left(\log{\left(t \right)} \right)}\right)}{t^{3}}$$