The first derivative
[src]
2
1 - tanh (log(t))
-----------------
t
$$\frac{1 - \tanh^{2}{\left(\log{\left(t \right)} \right)}}{t}$$
The second derivative
[src]
/ 2 \
(1 + 2*tanh(log(t)))*\-1 + tanh (log(t))/
-----------------------------------------
2
t
$$\frac{\left(2 \tanh{\left(\log{\left(t \right)} \right)} + 1\right) \left(\tanh^{2}{\left(\log{\left(t \right)} \right)} - 1\right)}{t^{2}}$$
The third derivative
[src]
/ 2 \ / 2 \
-2*\-1 + tanh (log(t))/*\3*tanh (log(t)) + 3*tanh(log(t))/
----------------------------------------------------------
3
t
$$- \frac{2 \left(\tanh^{2}{\left(\log{\left(t \right)} \right)} - 1\right) \left(3 \tanh^{2}{\left(\log{\left(t \right)} \right)} + 3 \tanh{\left(\log{\left(t \right)} \right)}\right)}{t^{3}}$$