Mister Exam

Derivative of lnsin(2x+5)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(sin(2*x + 5))
$$\log{\left(\sin{\left(2 x + 5 \right)} \right)}$$
d                    
--(log(sin(2*x + 5)))
dx                   
$$\frac{d}{d x} \log{\left(\sin{\left(2 x + 5 \right)} \right)}$$
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of sine is cosine:

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
2*cos(2*x + 5)
--------------
 sin(2*x + 5) 
$$\frac{2 \cos{\left(2 x + 5 \right)}}{\sin{\left(2 x + 5 \right)}}$$
The second derivative [src]
   /       2         \
   |    cos (5 + 2*x)|
-4*|1 + -------------|
   |       2         |
   \    sin (5 + 2*x)/
$$- 4 \cdot \left(1 + \frac{\cos^{2}{\left(2 x + 5 \right)}}{\sin^{2}{\left(2 x + 5 \right)}}\right)$$
The third derivative [src]
   /       2         \             
   |    cos (5 + 2*x)|             
16*|1 + -------------|*cos(5 + 2*x)
   |       2         |             
   \    sin (5 + 2*x)/             
-----------------------------------
            sin(5 + 2*x)           
$$\frac{16 \cdot \left(1 + \frac{\cos^{2}{\left(2 x + 5 \right)}}{\sin^{2}{\left(2 x + 5 \right)}}\right) \cos{\left(2 x + 5 \right)}}{\sin{\left(2 x + 5 \right)}}$$
The graph
Derivative of lnsin(2x+5)