Mister Exam

Derivative of tanh(ax)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
tanh(a*x)
$$\tanh{\left(a x \right)}$$
d            
--(tanh(a*x))
dx           
$$\frac{\partial}{\partial x} \tanh{\left(a x \right)}$$
The first derivative [src]
  /        2     \
a*\1 - tanh (a*x)/
$$a \left(1 - \tanh^{2}{\left(a x \right)}\right)$$
The second derivative [src]
   2 /         2     \          
2*a *\-1 + tanh (a*x)/*tanh(a*x)
$$2 a^{2} \left(\tanh^{2}{\left(a x \right)} - 1\right) \tanh{\left(a x \right)}$$
The third derivative [src]
    3 /         2     \ /           2     \
-2*a *\-1 + tanh (a*x)/*\-1 + 3*tanh (a*x)/
$$- 2 a^{3} \left(\tanh^{2}{\left(a x \right)} - 1\right) \left(3 \tanh^{2}{\left(a x \right)} - 1\right)$$