Apply the quotient rule, which is:
and .
To find :
The derivative of the constant is zero.
To find :
Apply the product rule:
; to find :
Apply the power rule: goes to
; to find :
Let .
The derivative of is itself.
Then, apply the chain rule. Multiply by :
Apply the power rule: goes to
The result of the chain rule is:
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
___ ___
-\/ x -\/ x
e e
- ------- - -------------
3/2 ___ ___
2*x 2*\/ x *\/ x
/ 1 1 \
| - + ----|
| x 3/2| ___
|2 3 x | -\/ x
|-- + ---- + --------|*e
| 2 5/2 ___ |
\x x \/ x /
------------------------------
4
/ 1 6 15 15 / 1 3 3 \ /1 1 \\
| -- + ---- + -- + ---- 4*|---- + -- + ----| 18*|- + ----||
| 2 5/2 3 7/2 | 3/2 2 5/2| |x 3/2|| ___
|60 105 x x x x \x x x / \ x /| -\/ x
|-- + ---- + --------------------- + -------------------- + -------------|*e
| 4 9/2 ___ 3/2 5/2 |
\x x \/ x x x /
----------------------------------------------------------------------------------
16
/ 1 3 3 /1 1 \\
| ---- + -- + ---- 3*|- + ----||
| 3/2 2 5/2 |x 3/2|| ___
|9 15 x x x \ x /| -\/ x
-|-- + ---- + ---------------- + ------------|*e
| 3 7/2 ___ 3/2 |
\x x \/ x x /
-------------------------------------------------------
8