Mister Exam

Other calculators


exp(-sqrt(x))/sqrt(x)

Derivative of exp(-sqrt(x))/sqrt(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    ___
 -\/ x 
e      
-------
   ___ 
 \/ x  
$$\frac{e^{- \sqrt{x}}}{\sqrt{x}}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of the constant is zero.

    To find :

    1. Apply the product rule:

      ; to find :

      1. Apply the power rule: goes to

      ; to find :

      1. Let .

      2. The derivative of is itself.

      3. Then, apply the chain rule. Multiply by :

        1. Apply the power rule: goes to

        The result of the chain rule is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
      ___          ___   
   -\/ x        -\/ x    
  e            e         
- ------- - -------------
      3/2       ___   ___
   2*x      2*\/ x *\/ x 
$$- \frac{e^{- \sqrt{x}}}{2 \sqrt{x} \sqrt{x}} - \frac{e^{- \sqrt{x}}}{2 x^{\frac{3}{2}}}$$
The second derivative [src]
/            1    1  \        
|            - + ----|        
|            x    3/2|     ___
|2     3         x   |  -\/ x 
|-- + ---- + --------|*e      
| 2    5/2      ___  |        
\x    x       \/ x   /        
------------------------------
              4               
$$\frac{\left(\frac{2}{x^{2}} + \frac{\frac{1}{x} + \frac{1}{x^{\frac{3}{2}}}}{\sqrt{x}} + \frac{3}{x^{\frac{5}{2}}}\right) e^{- \sqrt{x}}}{4}$$
4-я производная [src]
/            1     6     15    15      / 1     3     3  \      /1    1  \\        
|            -- + ---- + -- + ----   4*|---- + -- + ----|   18*|- + ----||        
|             2    5/2    3    7/2     | 3/2    2    5/2|      |x    3/2||     ___
|60   105    x    x      x    x        \x      x    x   /      \    x   /|  -\/ x 
|-- + ---- + --------------------- + -------------------- + -------------|*e      
| 4    9/2             ___                    3/2                 5/2    |        
\x    x              \/ x                    x                   x       /        
----------------------------------------------------------------------------------
                                        16                                        
$$\frac{\left(\frac{60}{x^{4}} + \frac{\frac{1}{x^{2}} + \frac{15}{x^{3}} + \frac{6}{x^{\frac{5}{2}}} + \frac{15}{x^{\frac{7}{2}}}}{\sqrt{x}} + \frac{4 \left(\frac{3}{x^{2}} + \frac{1}{x^{\frac{3}{2}}} + \frac{3}{x^{\frac{5}{2}}}\right)}{x^{\frac{3}{2}}} + \frac{18 \left(\frac{1}{x} + \frac{1}{x^{\frac{3}{2}}}\right)}{x^{\frac{5}{2}}} + \frac{105}{x^{\frac{9}{2}}}\right) e^{- \sqrt{x}}}{16}$$
The third derivative [src]
 /             1     3     3       /1    1  \\         
 |            ---- + -- + ----   3*|- + ----||         
 |             3/2    2    5/2     |x    3/2||     ___ 
 |9     15    x      x    x        \    x   /|  -\/ x  
-|-- + ---- + ---------------- + ------------|*e       
 | 3    7/2          ___              3/2    |         
 \x    x           \/ x              x       /         
-------------------------------------------------------
                           8                           
$$- \frac{\left(\frac{9}{x^{3}} + \frac{\frac{3}{x^{2}} + \frac{1}{x^{\frac{3}{2}}} + \frac{3}{x^{\frac{5}{2}}}}{\sqrt{x}} + \frac{3 \left(\frac{1}{x} + \frac{1}{x^{\frac{3}{2}}}\right)}{x^{\frac{3}{2}}} + \frac{15}{x^{\frac{7}{2}}}\right) e^{- \sqrt{x}}}{8}$$
The graph
Derivative of exp(-sqrt(x))/sqrt(x)