Mister Exam

Other calculators:


exp(-sqrt(x))/sqrt(x)

Limit of the function exp(-sqrt(x))/sqrt(x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /    ___\
     | -\/ x |
     |e      |
 lim |-------|
x->oo|   ___ |
     \ \/ x  /
$$\lim_{x \to \infty}\left(\frac{e^{- \sqrt{x}}}{\sqrt{x}}\right)$$
Limit(exp(-sqrt(x))/sqrt(x), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{e^{- \sqrt{x}}}{\sqrt{x}}\right) = 0$$
$$\lim_{x \to 0^-}\left(\frac{e^{- \sqrt{x}}}{\sqrt{x}}\right) = - \infty i$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{e^{- \sqrt{x}}}{\sqrt{x}}\right) = \infty$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{e^{- \sqrt{x}}}{\sqrt{x}}\right) = e^{-1}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{e^{- \sqrt{x}}}{\sqrt{x}}\right) = e^{-1}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{e^{- \sqrt{x}}}{\sqrt{x}}\right)$$
More at x→-oo
The graph
Limit of the function exp(-sqrt(x))/sqrt(x)