Mister Exam

Derivative of exp(3x)(x+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 3*x        
e   *(x + 1)
(x+1)e3x\left(x + 1\right) e^{3 x}
exp(3*x)*(x + 1)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=e3xf{\left(x \right)} = e^{3 x}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Let u=3xu = 3 x.

    2. The derivative of eue^{u} is itself.

    3. Then, apply the chain rule. Multiply by ddx3x\frac{d}{d x} 3 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 33

      The result of the chain rule is:

      3e3x3 e^{3 x}

    g(x)=x+1g{\left(x \right)} = x + 1; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Differentiate x+1x + 1 term by term:

      1. Apply the power rule: xx goes to 11

      2. The derivative of the constant 11 is zero.

      The result is: 11

    The result is: 3(x+1)e3x+e3x3 \left(x + 1\right) e^{3 x} + e^{3 x}

  2. Now simplify:

    (3x+4)e3x\left(3 x + 4\right) e^{3 x}


The answer is:

(3x+4)e3x\left(3 x + 4\right) e^{3 x}

The graph
02468-8-6-4-2-1010-500000000000000500000000000000
The first derivative [src]
           3*x    3*x
3*(x + 1)*e    + e   
3(x+1)e3x+e3x3 \left(x + 1\right) e^{3 x} + e^{3 x}
The second derivative [src]
             3*x
3*(5 + 3*x)*e   
3(3x+5)e3x3 \left(3 x + 5\right) e^{3 x}
The third derivative [src]
            3*x
27*(2 + x)*e   
27(x+2)e3x27 \left(x + 2\right) e^{3 x}