Mister Exam

Other calculators


e^x*sinx-1

Derivative of e^x*sinx-1

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 x           
e *sin(x) - 1
exsin(x)1e^{x} \sin{\left(x \right)} - 1
d / x           \
--\e *sin(x) - 1/
dx               
ddx(exsin(x)1)\frac{d}{d x} \left(e^{x} \sin{\left(x \right)} - 1\right)
Detail solution
  1. Differentiate exsin(x)1e^{x} \sin{\left(x \right)} - 1 term by term:

    1. Apply the product rule:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

      f(x)=exf{\left(x \right)} = e^{x}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. The derivative of exe^{x} is itself.

      g(x)=sin(x)g{\left(x \right)} = \sin{\left(x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. The derivative of sine is cosine:

        ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

      The result is: exsin(x)+excos(x)e^{x} \sin{\left(x \right)} + e^{x} \cos{\left(x \right)}

    2. The derivative of the constant (1)1\left(-1\right) 1 is zero.

    The result is: exsin(x)+excos(x)e^{x} \sin{\left(x \right)} + e^{x} \cos{\left(x \right)}

  2. Now simplify:

    2exsin(x+π4)\sqrt{2} e^{x} \sin{\left(x + \frac{\pi}{4} \right)}


The answer is:

2exsin(x+π4)\sqrt{2} e^{x} \sin{\left(x + \frac{\pi}{4} \right)}

The graph
02468-8-6-4-2-1010-5000050000
The first derivative [src]
        x    x       
cos(x)*e  + e *sin(x)
exsin(x)+excos(x)e^{x} \sin{\left(x \right)} + e^{x} \cos{\left(x \right)}
The second derivative [src]
          x
2*cos(x)*e 
2excos(x)2 e^{x} \cos{\left(x \right)}
The third derivative [src]
                      x
2*(-sin(x) + cos(x))*e 
2(sin(x)+cos(x))ex2 \left(- \sin{\left(x \right)} + \cos{\left(x \right)}\right) e^{x}
The graph
Derivative of e^x*sinx-1