Detail solution
-
Apply the product rule:
; to find :
-
Let .
-
The derivative of is itself.
-
Then, apply the chain rule. Multiply by :
-
The derivative of sine is cosine:
The result of the chain rule is:
; to find :
-
Rewrite the function to be differentiated:
-
Apply the quotient rule, which is:
and .
To find :
-
The derivative of sine is cosine:
To find :
-
The derivative of cosine is negative sine:
Now plug in to the quotient rule:
The result is:
Now simplify:
The answer is:
The first derivative
[src]
/ 2 \ sin(x) sin(x)
\1 + tan (x)/*e + cos(x)*e *tan(x)
$$\left(\tan^{2}{\left(x \right)} + 1\right) e^{\sin{\left(x \right)}} + e^{\sin{\left(x \right)}} \cos{\left(x \right)} \tan{\left(x \right)}$$
The second derivative
[src]
/ / 2 \ / 2 \ / 2 \ \ sin(x)
\- \- cos (x) + sin(x)/*tan(x) + 2*\1 + tan (x)/*cos(x) + 2*\1 + tan (x)/*tan(x)/*e
$$\left(- \left(\sin{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \tan{\left(x \right)} + 2 \left(\tan^{2}{\left(x \right)} + 1\right) \cos{\left(x \right)} + 2 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)}\right) e^{\sin{\left(x \right)}}$$
The third derivative
[src]
/ / 2 \ / 2 \ / 2 \ / 2 \ / 2 \ / 2 \ \ sin(x)
\- 3*\1 + tan (x)/*\- cos (x) + sin(x)/ + 2*\1 + tan (x)/*\1 + 3*tan (x)/ - \1 - cos (x) + 3*sin(x)/*cos(x)*tan(x) + 6*\1 + tan (x)/*cos(x)*tan(x)/*e
$$\left(- 3 \left(\sin{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \left(\tan^{2}{\left(x \right)} + 1\right) + 2 \left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} + 1\right) + 6 \left(\tan^{2}{\left(x \right)} + 1\right) \cos{\left(x \right)} \tan{\left(x \right)} - \left(3 \sin{\left(x \right)} - \cos^{2}{\left(x \right)} + 1\right) \cos{\left(x \right)} \tan{\left(x \right)}\right) e^{\sin{\left(x \right)}}$$