Mister Exam

Other calculators

Derivative of (e^sin(x)*tg(x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 sin(x)       
E      *tan(x)
esin(x)tan(x)e^{\sin{\left(x \right)}} \tan{\left(x \right)}
E^sin(x)*tan(x)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=esin(x)f{\left(x \right)} = e^{\sin{\left(x \right)}}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Let u=sin(x)u = \sin{\left(x \right)}.

    2. The derivative of eue^{u} is itself.

    3. Then, apply the chain rule. Multiply by ddxsin(x)\frac{d}{d x} \sin{\left(x \right)}:

      1. The derivative of sine is cosine:

        ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

      The result of the chain rule is:

      esin(x)cos(x)e^{\sin{\left(x \right)}} \cos{\left(x \right)}

    g(x)=tan(x)g{\left(x \right)} = \tan{\left(x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Rewrite the function to be differentiated:

      tan(x)=sin(x)cos(x)\tan{\left(x \right)} = \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}

    2. Apply the quotient rule, which is:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

      f(x)=sin(x)f{\left(x \right)} = \sin{\left(x \right)} and g(x)=cos(x)g{\left(x \right)} = \cos{\left(x \right)}.

      To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. The derivative of sine is cosine:

        ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

      To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. The derivative of cosine is negative sine:

        ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

      Now plug in to the quotient rule:

      sin2(x)+cos2(x)cos2(x)\frac{\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}}

    The result is: (sin2(x)+cos2(x))esin(x)cos2(x)+esin(x)cos(x)tan(x)\frac{\left(\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}\right) e^{\sin{\left(x \right)}}}{\cos^{2}{\left(x \right)}} + e^{\sin{\left(x \right)}} \cos{\left(x \right)} \tan{\left(x \right)}

  2. Now simplify:

    (sin3(x)+sin(x)+1)esin(x)cos2(x)\frac{\left(- \sin^{3}{\left(x \right)} + \sin{\left(x \right)} + 1\right) e^{\sin{\left(x \right)}}}{\cos^{2}{\left(x \right)}}


The answer is:

(sin3(x)+sin(x)+1)esin(x)cos2(x)\frac{\left(- \sin^{3}{\left(x \right)} + \sin{\left(x \right)} + 1\right) e^{\sin{\left(x \right)}}}{\cos^{2}{\left(x \right)}}

The graph
02468-8-6-4-2-1010-25002500
The first derivative [src]
/       2   \  sin(x)           sin(x)       
\1 + tan (x)/*e       + cos(x)*e      *tan(x)
(tan2(x)+1)esin(x)+esin(x)cos(x)tan(x)\left(\tan^{2}{\left(x \right)} + 1\right) e^{\sin{\left(x \right)}} + e^{\sin{\left(x \right)}} \cos{\left(x \right)} \tan{\left(x \right)}
The second derivative [src]
/  /     2            \            /       2   \            /       2   \       \  sin(x)
\- \- cos (x) + sin(x)/*tan(x) + 2*\1 + tan (x)/*cos(x) + 2*\1 + tan (x)/*tan(x)/*e      
((sin(x)cos2(x))tan(x)+2(tan2(x)+1)cos(x)+2(tan2(x)+1)tan(x))esin(x)\left(- \left(\sin{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \tan{\left(x \right)} + 2 \left(\tan^{2}{\left(x \right)} + 1\right) \cos{\left(x \right)} + 2 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)}\right) e^{\sin{\left(x \right)}}
The third derivative [src]
/    /       2   \ /     2            \     /       2   \ /         2   \   /       2              \                   /       2   \              \  sin(x)
\- 3*\1 + tan (x)/*\- cos (x) + sin(x)/ + 2*\1 + tan (x)/*\1 + 3*tan (x)/ - \1 - cos (x) + 3*sin(x)/*cos(x)*tan(x) + 6*\1 + tan (x)/*cos(x)*tan(x)/*e      
(3(sin(x)cos2(x))(tan2(x)+1)+2(tan2(x)+1)(3tan2(x)+1)+6(tan2(x)+1)cos(x)tan(x)(3sin(x)cos2(x)+1)cos(x)tan(x))esin(x)\left(- 3 \left(\sin{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \left(\tan^{2}{\left(x \right)} + 1\right) + 2 \left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} + 1\right) + 6 \left(\tan^{2}{\left(x \right)} + 1\right) \cos{\left(x \right)} \tan{\left(x \right)} - \left(3 \sin{\left(x \right)} - \cos^{2}{\left(x \right)} + 1\right) \cos{\left(x \right)} \tan{\left(x \right)}\right) e^{\sin{\left(x \right)}}