Mister Exam

Derivative of (ctg(x)+x)/(1-xctg(x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 cot(x) + x 
------------
1 - x*cot(x)
$$\frac{x + \cot{\left(x \right)}}{- x \cot{\left(x \right)} + 1}$$
(cot(x) + x)/(1 - x*cot(x))
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. Apply the power rule: goes to

      2. There are multiple ways to do this derivative.

        Method #1

        1. Rewrite the function to be differentiated:

        2. Let .

        3. Apply the power rule: goes to

        4. Then, apply the chain rule. Multiply by :

          1. Rewrite the function to be differentiated:

          2. Apply the quotient rule, which is:

            and .

            To find :

            1. The derivative of sine is cosine:

            To find :

            1. The derivative of cosine is negative sine:

            Now plug in to the quotient rule:

          The result of the chain rule is:

        Method #2

        1. Rewrite the function to be differentiated:

        2. Apply the quotient rule, which is:

          and .

          To find :

          1. The derivative of cosine is negative sine:

          To find :

          1. The derivative of sine is cosine:

          Now plug in to the quotient rule:

      The result is:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the product rule:

          ; to find :

          1. Apply the power rule: goes to

          ; to find :

          The result is:

        So, the result is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
       2         /  /        2   \         \             
    cot (x)      \x*\-1 - cot (x)/ + cot(x)/*(cot(x) + x)
- ------------ + ----------------------------------------
  1 - x*cot(x)                             2             
                             (1 - x*cot(x))              
$$\frac{\left(x + \cot{\left(x \right)}\right) \left(x \left(- \cot^{2}{\left(x \right)} - 1\right) + \cot{\left(x \right)}\right)}{\left(- x \cot{\left(x \right)} + 1\right)^{2}} - \frac{\cot^{2}{\left(x \right)}}{- x \cot{\left(x \right)} + 1}$$
The second derivative [src]
  /                                                                            /                                         2                         \\
  |                                                                            |              /            /       2   \\                          ||
  |                                                                            |       2      \-cot(x) + x*\1 + cot (x)//      /       2   \       ||
  |                            2    /            /       2   \\   (x + cot(x))*|1 + cot (x) + ---------------------------- - x*\1 + cot (x)/*cot(x)||
  |  /       2   \          cot (x)*\-cot(x) + x*\1 + cot (x)//                \                     -1 + x*cot(x)                                 /|
2*|- \1 + cot (x)/*cot(x) + ----------------------------------- - ----------------------------------------------------------------------------------|
  \                                    -1 + x*cot(x)                                                -1 + x*cot(x)                                   /
-----------------------------------------------------------------------------------------------------------------------------------------------------
                                                                    -1 + x*cot(x)                                                                    
$$\frac{2 \left(- \frac{\left(x + \cot{\left(x \right)}\right) \left(- x \left(\cot^{2}{\left(x \right)} + 1\right) \cot{\left(x \right)} + \frac{\left(x \left(\cot^{2}{\left(x \right)} + 1\right) - \cot{\left(x \right)}\right)^{2}}{x \cot{\left(x \right)} - 1} + \cot^{2}{\left(x \right)} + 1\right)}{x \cot{\left(x \right)} - 1} + \frac{\left(x \left(\cot^{2}{\left(x \right)} + 1\right) - \cot{\left(x \right)}\right) \cot^{2}{\left(x \right)}}{x \cot{\left(x \right)} - 1} - \left(\cot^{2}{\left(x \right)} + 1\right) \cot{\left(x \right)}\right)}{x \cot{\left(x \right)} - 1}$$
The third derivative [src]
  /                                             /                                                                                         3                                                                       \                                                                                                                                       \
  |                                             |                                                              /            /       2   \\      /            /       2   \\ /       2        /       2   \       \|             /                                         2                         \                                                     |
  |                                             |/       2   \ /              /       2   \          2   \   3*\-cot(x) + x*\1 + cot (x)//    6*\-cot(x) + x*\1 + cot (x)//*\1 + cot (x) - x*\1 + cot (x)/*cot(x)/|             |              /            /       2   \\                          |                                                     |
  |                                (x + cot(x))*|\1 + cot (x)/*\-3*cot(x) + x*\1 + cot (x)/ + 2*x*cot (x)/ + ------------------------------ + --------------------------------------------------------------------|        2    |       2      \-cot(x) + x*\1 + cot (x)//      /       2   \       |                                                     |
  |                                             |                                                                                  2                                     -1 + x*cot(x)                            |   3*cot (x)*|1 + cot (x) + ---------------------------- - x*\1 + cot (x)/*cot(x)|     /       2   \ /            /       2   \\       |
  |/       2   \ /         2   \                \                                                                   (-1 + x*cot(x))                                                                               /             \                     -1 + x*cot(x)                                 /   3*\1 + cot (x)/*\-cot(x) + x*\1 + cot (x)//*cot(x)|
2*|\1 + cot (x)/*\1 + 3*cot (x)/ - -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- + ------------------------------------------------------------------------------- - --------------------------------------------------|
  \                                                                                                                 -1 + x*cot(x)                                                                                                                      -1 + x*cot(x)                                                      -1 + x*cot(x)                   /
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                                                                                       -1 + x*cot(x)                                                                                                                                                                       
$$\frac{2 \left(- \frac{\left(x + \cot{\left(x \right)}\right) \left(\frac{3 \left(x \left(\cot^{2}{\left(x \right)} + 1\right) - \cot{\left(x \right)}\right)^{3}}{\left(x \cot{\left(x \right)} - 1\right)^{2}} + \frac{6 \left(x \left(\cot^{2}{\left(x \right)} + 1\right) - \cot{\left(x \right)}\right) \left(- x \left(\cot^{2}{\left(x \right)} + 1\right) \cot{\left(x \right)} + \cot^{2}{\left(x \right)} + 1\right)}{x \cot{\left(x \right)} - 1} + \left(\cot^{2}{\left(x \right)} + 1\right) \left(x \left(\cot^{2}{\left(x \right)} + 1\right) + 2 x \cot^{2}{\left(x \right)} - 3 \cot{\left(x \right)}\right)\right)}{x \cot{\left(x \right)} - 1} - \frac{3 \left(x \left(\cot^{2}{\left(x \right)} + 1\right) - \cot{\left(x \right)}\right) \left(\cot^{2}{\left(x \right)} + 1\right) \cot{\left(x \right)}}{x \cot{\left(x \right)} - 1} + \left(\cot^{2}{\left(x \right)} + 1\right) \left(3 \cot^{2}{\left(x \right)} + 1\right) + \frac{3 \left(- x \left(\cot^{2}{\left(x \right)} + 1\right) \cot{\left(x \right)} + \frac{\left(x \left(\cot^{2}{\left(x \right)} + 1\right) - \cot{\left(x \right)}\right)^{2}}{x \cot{\left(x \right)} - 1} + \cot^{2}{\left(x \right)} + 1\right) \cot^{2}{\left(x \right)}}{x \cot{\left(x \right)} - 1}\right)}{x \cot{\left(x \right)} - 1}$$