Mister Exam

Derivative of y=ctgx+x/(1-xctgx)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
              x      
cot(x) + ------------
         1 - x*cot(x)
$$\frac{x}{- x \cot{\left(x \right)} + 1} + \cot{\left(x \right)}$$
cot(x) + x/(1 - x*cot(x))
Detail solution
  1. Differentiate term by term:

    1. There are multiple ways to do this derivative.

      Method #1

      1. Rewrite the function to be differentiated:

      2. Let .

      3. Apply the power rule: goes to

      4. Then, apply the chain rule. Multiply by :

        1. Rewrite the function to be differentiated:

        2. Apply the quotient rule, which is:

          and .

          To find :

          1. The derivative of sine is cosine:

          To find :

          1. The derivative of cosine is negative sine:

          Now plug in to the quotient rule:

        The result of the chain rule is:

      Method #2

      1. Rewrite the function to be differentiated:

      2. Apply the quotient rule, which is:

        and .

        To find :

        1. The derivative of cosine is negative sine:

        To find :

        1. The derivative of sine is cosine:

        Now plug in to the quotient rule:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. Apply the power rule: goes to

      To find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the product rule:

            ; to find :

            1. Apply the power rule: goes to

            ; to find :

            The result is:

          So, the result is:

        The result is:

      Now plug in to the quotient rule:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                                /  /        2   \         \
          1            2      x*\x*\-1 - cot (x)/ + cot(x)/
-1 + ------------ - cot (x) + -----------------------------
     1 - x*cot(x)                                  2       
                                     (1 - x*cot(x))        
$$\frac{x \left(x \left(- \cot^{2}{\left(x \right)} - 1\right) + \cot{\left(x \right)}\right)}{\left(- x \cot{\left(x \right)} + 1\right)^{2}} - \cot^{2}{\left(x \right)} - 1 + \frac{1}{- x \cot{\left(x \right)} + 1}$$
The second derivative [src]
  /                                                                                2                                           \
  |                                   /       2   \     /            /       2   \\      /       2        /       2   \       \|
  |/       2   \          -cot(x) + x*\1 + cot (x)/   x*\-cot(x) + x*\1 + cot (x)//    x*\1 + cot (x) - x*\1 + cot (x)/*cot(x)/|
2*|\1 + cot (x)/*cot(x) - ------------------------- - ------------------------------ - ----------------------------------------|
  |                                           2                             3                                     2            |
  \                            (-1 + x*cot(x))               (-1 + x*cot(x))                       (-1 + x*cot(x))             /
$$2 \left(- \frac{x \left(x \left(\cot^{2}{\left(x \right)} + 1\right) - \cot{\left(x \right)}\right)^{2}}{\left(x \cot{\left(x \right)} - 1\right)^{3}} - \frac{x \left(- x \left(\cot^{2}{\left(x \right)} + 1\right) \cot{\left(x \right)} + \cot^{2}{\left(x \right)} + 1\right)}{\left(x \cot{\left(x \right)} - 1\right)^{2}} - \frac{x \left(\cot^{2}{\left(x \right)} + 1\right) - \cot{\left(x \right)}}{\left(x \cot{\left(x \right)} - 1\right)^{2}} + \left(\cot^{2}{\left(x \right)} + 1\right) \cot{\left(x \right)}\right)$$
The third derivative [src]
   /                                                                        2                                                                             3                                                                                                                                       \
   |             2                               /            /       2   \\      /       2        /       2   \       \       /            /       2   \\      /       2   \ /              /       2   \          2   \       /            /       2   \\ /       2        /       2   \       \|
   |/       2   \         2    /       2   \   3*\-cot(x) + x*\1 + cot (x)//    3*\1 + cot (x) - x*\1 + cot (x)/*cot(x)/   3*x*\-cot(x) + x*\1 + cot (x)//    x*\1 + cot (x)/*\-3*cot(x) + x*\1 + cot (x)/ + 2*x*cot (x)/   6*x*\-cot(x) + x*\1 + cot (x)//*\1 + cot (x) - x*\1 + cot (x)/*cot(x)/|
-2*|\1 + cot (x)/  + 2*cot (x)*\1 + cot (x)/ + ------------------------------ + ---------------------------------------- + -------------------------------- + ----------------------------------------------------------- + ----------------------------------------------------------------------|
   |                                                                 3                                     2                                      4                                                2                                                                  3                           |
   \                                                  (-1 + x*cot(x))                       (-1 + x*cot(x))                        (-1 + x*cot(x))                                  (-1 + x*cot(x))                                                    (-1 + x*cot(x))                            /
$$- 2 \left(\frac{3 x \left(x \left(\cot^{2}{\left(x \right)} + 1\right) - \cot{\left(x \right)}\right)^{3}}{\left(x \cot{\left(x \right)} - 1\right)^{4}} + \frac{6 x \left(x \left(\cot^{2}{\left(x \right)} + 1\right) - \cot{\left(x \right)}\right) \left(- x \left(\cot^{2}{\left(x \right)} + 1\right) \cot{\left(x \right)} + \cot^{2}{\left(x \right)} + 1\right)}{\left(x \cot{\left(x \right)} - 1\right)^{3}} + \frac{x \left(\cot^{2}{\left(x \right)} + 1\right) \left(x \left(\cot^{2}{\left(x \right)} + 1\right) + 2 x \cot^{2}{\left(x \right)} - 3 \cot{\left(x \right)}\right)}{\left(x \cot{\left(x \right)} - 1\right)^{2}} + \frac{3 \left(x \left(\cot^{2}{\left(x \right)} + 1\right) - \cot{\left(x \right)}\right)^{2}}{\left(x \cot{\left(x \right)} - 1\right)^{3}} + \left(\cot^{2}{\left(x \right)} + 1\right)^{2} + 2 \left(\cot^{2}{\left(x \right)} + 1\right) \cot^{2}{\left(x \right)} + \frac{3 \left(- x \left(\cot^{2}{\left(x \right)} + 1\right) \cot{\left(x \right)} + \cot^{2}{\left(x \right)} + 1\right)}{\left(x \cot{\left(x \right)} - 1\right)^{2}}\right)$$
The graph
Derivative of y=ctgx+x/(1-xctgx)