Mister Exam

Derivative of ctg5x+lnx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
cot(5*x) + log(x)
log(x)+cot(5x)\log{\left(x \right)} + \cot{\left(5 x \right)}
cot(5*x) + log(x)
Detail solution
  1. Differentiate log(x)+cot(5x)\log{\left(x \right)} + \cot{\left(5 x \right)} term by term:

    1. There are multiple ways to do this derivative.

      Method #1

      1. Rewrite the function to be differentiated:

        cot(5x)=1tan(5x)\cot{\left(5 x \right)} = \frac{1}{\tan{\left(5 x \right)}}

      2. Let u=tan(5x)u = \tan{\left(5 x \right)}.

      3. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

      4. Then, apply the chain rule. Multiply by ddxtan(5x)\frac{d}{d x} \tan{\left(5 x \right)}:

        1. Rewrite the function to be differentiated:

          tan(5x)=sin(5x)cos(5x)\tan{\left(5 x \right)} = \frac{\sin{\left(5 x \right)}}{\cos{\left(5 x \right)}}

        2. Apply the quotient rule, which is:

          ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

          f(x)=sin(5x)f{\left(x \right)} = \sin{\left(5 x \right)} and g(x)=cos(5x)g{\left(x \right)} = \cos{\left(5 x \right)}.

          To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

          1. Let u=5xu = 5 x.

          2. The derivative of sine is cosine:

            ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

          3. Then, apply the chain rule. Multiply by ddx5x\frac{d}{d x} 5 x:

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: xx goes to 11

              So, the result is: 55

            The result of the chain rule is:

            5cos(5x)5 \cos{\left(5 x \right)}

          To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

          1. Let u=5xu = 5 x.

          2. The derivative of cosine is negative sine:

            dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

          3. Then, apply the chain rule. Multiply by ddx5x\frac{d}{d x} 5 x:

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: xx goes to 11

              So, the result is: 55

            The result of the chain rule is:

            5sin(5x)- 5 \sin{\left(5 x \right)}

          Now plug in to the quotient rule:

          5sin2(5x)+5cos2(5x)cos2(5x)\frac{5 \sin^{2}{\left(5 x \right)} + 5 \cos^{2}{\left(5 x \right)}}{\cos^{2}{\left(5 x \right)}}

        The result of the chain rule is:

        5sin2(5x)+5cos2(5x)cos2(5x)tan2(5x)- \frac{5 \sin^{2}{\left(5 x \right)} + 5 \cos^{2}{\left(5 x \right)}}{\cos^{2}{\left(5 x \right)} \tan^{2}{\left(5 x \right)}}

      Method #2

      1. Rewrite the function to be differentiated:

        cot(5x)=cos(5x)sin(5x)\cot{\left(5 x \right)} = \frac{\cos{\left(5 x \right)}}{\sin{\left(5 x \right)}}

      2. Apply the quotient rule, which is:

        ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

        f(x)=cos(5x)f{\left(x \right)} = \cos{\left(5 x \right)} and g(x)=sin(5x)g{\left(x \right)} = \sin{\left(5 x \right)}.

        To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

        1. Let u=5xu = 5 x.

        2. The derivative of cosine is negative sine:

          dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

        3. Then, apply the chain rule. Multiply by ddx5x\frac{d}{d x} 5 x:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 55

          The result of the chain rule is:

          5sin(5x)- 5 \sin{\left(5 x \right)}

        To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

        1. Let u=5xu = 5 x.

        2. The derivative of sine is cosine:

          ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

        3. Then, apply the chain rule. Multiply by ddx5x\frac{d}{d x} 5 x:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 55

          The result of the chain rule is:

          5cos(5x)5 \cos{\left(5 x \right)}

        Now plug in to the quotient rule:

        5sin2(5x)5cos2(5x)sin2(5x)\frac{- 5 \sin^{2}{\left(5 x \right)} - 5 \cos^{2}{\left(5 x \right)}}{\sin^{2}{\left(5 x \right)}}

    2. The derivative of log(x)\log{\left(x \right)} is 1x\frac{1}{x}.

    The result is: 5sin2(5x)+5cos2(5x)cos2(5x)tan2(5x)+1x- \frac{5 \sin^{2}{\left(5 x \right)} + 5 \cos^{2}{\left(5 x \right)}}{\cos^{2}{\left(5 x \right)} \tan^{2}{\left(5 x \right)}} + \frac{1}{x}

  2. Now simplify:

    5sin2(5x)+1x- \frac{5}{\sin^{2}{\left(5 x \right)}} + \frac{1}{x}


The answer is:

5sin2(5x)+1x- \frac{5}{\sin^{2}{\left(5 x \right)}} + \frac{1}{x}

The graph
02468-8-6-4-2-1010-50002500
The first derivative [src]
     1        2     
-5 + - - 5*cot (5*x)
     x              
5cot2(5x)5+1x- 5 \cot^{2}{\left(5 x \right)} - 5 + \frac{1}{x}
The second derivative [src]
  1       /       2     \         
- -- + 50*\1 + cot (5*x)/*cot(5*x)
   2                              
  x                               
50(cot2(5x)+1)cot(5x)1x250 \left(\cot^{2}{\left(5 x \right)} + 1\right) \cot{\left(5 x \right)} - \frac{1}{x^{2}}
The third derivative [src]
  /                        2                                \
  |1        /       2     \           2      /       2     \|
2*|-- - 125*\1 + cot (5*x)/  - 250*cot (5*x)*\1 + cot (5*x)/|
  | 3                                                       |
  \x                                                        /
2(125(cot2(5x)+1)2250(cot2(5x)+1)cot2(5x)+1x3)2 \left(- 125 \left(\cot^{2}{\left(5 x \right)} + 1\right)^{2} - 250 \left(\cot^{2}{\left(5 x \right)} + 1\right) \cot^{2}{\left(5 x \right)} + \frac{1}{x^{3}}\right)