Mister Exam

Derivative of sqrt(x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   ____
  /  2 
\/  x  
$$\sqrt{x^{2}}$$
  /   ____\
d |  /  2 |
--\\/  x  /
dx         
$$\frac{d}{d x} \sqrt{x^{2}}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Apply the power rule: goes to

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
|x|
---
 x 
$$\frac{\left|{x}\right|}{x}$$
The second derivative [src]
  |x|          
- --- + sign(x)
   x           
---------------
       x       
$$\frac{\operatorname{sign}{\left(x \right)} - \frac{\left|{x}\right|}{x}}{x}$$
The third derivative [src]
  /|x|   sign(x)                \
2*|--- - ------- + DiracDelta(x)|
  |  2      x                   |
  \ x                           /
---------------------------------
                x                
$$\frac{2 \left(\delta\left(x\right) - \frac{\operatorname{sign}{\left(x \right)}}{x} + \frac{\left|{x}\right|}{x^{2}}\right)}{x}$$
The graph
Derivative of sqrt(x^2)