Mister Exam

Derivative of ctg4x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
cot(4*x)
cot(4x)\cot{\left(4 x \right)}
cot(4*x)
Detail solution
  1. There are multiple ways to do this derivative.

    Method #1

    1. Rewrite the function to be differentiated:

      cot(4x)=1tan(4x)\cot{\left(4 x \right)} = \frac{1}{\tan{\left(4 x \right)}}

    2. Let u=tan(4x)u = \tan{\left(4 x \right)}.

    3. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

    4. Then, apply the chain rule. Multiply by ddxtan(4x)\frac{d}{d x} \tan{\left(4 x \right)}:

      1. Rewrite the function to be differentiated:

        tan(4x)=sin(4x)cos(4x)\tan{\left(4 x \right)} = \frac{\sin{\left(4 x \right)}}{\cos{\left(4 x \right)}}

      2. Apply the quotient rule, which is:

        ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

        f(x)=sin(4x)f{\left(x \right)} = \sin{\left(4 x \right)} and g(x)=cos(4x)g{\left(x \right)} = \cos{\left(4 x \right)}.

        To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

        1. Let u=4xu = 4 x.

        2. The derivative of sine is cosine:

          ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

        3. Then, apply the chain rule. Multiply by ddx4x\frac{d}{d x} 4 x:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 44

          The result of the chain rule is:

          4cos(4x)4 \cos{\left(4 x \right)}

        To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

        1. Let u=4xu = 4 x.

        2. The derivative of cosine is negative sine:

          dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

        3. Then, apply the chain rule. Multiply by ddx4x\frac{d}{d x} 4 x:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 44

          The result of the chain rule is:

          4sin(4x)- 4 \sin{\left(4 x \right)}

        Now plug in to the quotient rule:

        4sin2(4x)+4cos2(4x)cos2(4x)\frac{4 \sin^{2}{\left(4 x \right)} + 4 \cos^{2}{\left(4 x \right)}}{\cos^{2}{\left(4 x \right)}}

      The result of the chain rule is:

      4sin2(4x)+4cos2(4x)cos2(4x)tan2(4x)- \frac{4 \sin^{2}{\left(4 x \right)} + 4 \cos^{2}{\left(4 x \right)}}{\cos^{2}{\left(4 x \right)} \tan^{2}{\left(4 x \right)}}

    Method #2

    1. Rewrite the function to be differentiated:

      cot(4x)=cos(4x)sin(4x)\cot{\left(4 x \right)} = \frac{\cos{\left(4 x \right)}}{\sin{\left(4 x \right)}}

    2. Apply the quotient rule, which is:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

      f(x)=cos(4x)f{\left(x \right)} = \cos{\left(4 x \right)} and g(x)=sin(4x)g{\left(x \right)} = \sin{\left(4 x \right)}.

      To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Let u=4xu = 4 x.

      2. The derivative of cosine is negative sine:

        dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx4x\frac{d}{d x} 4 x:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 44

        The result of the chain rule is:

        4sin(4x)- 4 \sin{\left(4 x \right)}

      To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Let u=4xu = 4 x.

      2. The derivative of sine is cosine:

        ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx4x\frac{d}{d x} 4 x:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 44

        The result of the chain rule is:

        4cos(4x)4 \cos{\left(4 x \right)}

      Now plug in to the quotient rule:

      4sin2(4x)4cos2(4x)sin2(4x)\frac{- 4 \sin^{2}{\left(4 x \right)} - 4 \cos^{2}{\left(4 x \right)}}{\sin^{2}{\left(4 x \right)}}

  2. Now simplify:

    4sin2(4x)- \frac{4}{\sin^{2}{\left(4 x \right)}}


The answer is:

4sin2(4x)- \frac{4}{\sin^{2}{\left(4 x \right)}}

The graph
02468-8-6-4-2-1010-25002500
The first derivative [src]
          2     
-4 - 4*cot (4*x)
4cot2(4x)4- 4 \cot^{2}{\left(4 x \right)} - 4
The second derivative [src]
   /       2     \         
32*\1 + cot (4*x)/*cot(4*x)
32(cot2(4x)+1)cot(4x)32 \left(\cot^{2}{\left(4 x \right)} + 1\right) \cot{\left(4 x \right)}
The third derivative [src]
     /       2     \ /         2     \
-128*\1 + cot (4*x)/*\1 + 3*cot (4*x)/
128(cot2(4x)+1)(3cot2(4x)+1)- 128 \left(\cot^{2}{\left(4 x \right)} + 1\right) \left(3 \cot^{2}{\left(4 x \right)} + 1\right)
The graph
Derivative of ctg4x