Mister Exam

Derivative of ctg(4x)*ln(3x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
cot(4*x)*log(3*x)
log(3x)cot(4x)\log{\left(3 x \right)} \cot{\left(4 x \right)}
cot(4*x)*log(3*x)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=cot(4x)f{\left(x \right)} = \cot{\left(4 x \right)}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. There are multiple ways to do this derivative.

      Method #1

      1. Rewrite the function to be differentiated:

        cot(4x)=1tan(4x)\cot{\left(4 x \right)} = \frac{1}{\tan{\left(4 x \right)}}

      2. Let u=tan(4x)u = \tan{\left(4 x \right)}.

      3. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

      4. Then, apply the chain rule. Multiply by ddxtan(4x)\frac{d}{d x} \tan{\left(4 x \right)}:

        1. Rewrite the function to be differentiated:

          tan(4x)=sin(4x)cos(4x)\tan{\left(4 x \right)} = \frac{\sin{\left(4 x \right)}}{\cos{\left(4 x \right)}}

        2. Apply the quotient rule, which is:

          ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

          f(x)=sin(4x)f{\left(x \right)} = \sin{\left(4 x \right)} and g(x)=cos(4x)g{\left(x \right)} = \cos{\left(4 x \right)}.

          To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

          1. Let u=4xu = 4 x.

          2. The derivative of sine is cosine:

            ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

          3. Then, apply the chain rule. Multiply by ddx4x\frac{d}{d x} 4 x:

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: xx goes to 11

              So, the result is: 44

            The result of the chain rule is:

            4cos(4x)4 \cos{\left(4 x \right)}

          To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

          1. Let u=4xu = 4 x.

          2. The derivative of cosine is negative sine:

            dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

          3. Then, apply the chain rule. Multiply by ddx4x\frac{d}{d x} 4 x:

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: xx goes to 11

              So, the result is: 44

            The result of the chain rule is:

            4sin(4x)- 4 \sin{\left(4 x \right)}

          Now plug in to the quotient rule:

          4sin2(4x)+4cos2(4x)cos2(4x)\frac{4 \sin^{2}{\left(4 x \right)} + 4 \cos^{2}{\left(4 x \right)}}{\cos^{2}{\left(4 x \right)}}

        The result of the chain rule is:

        4sin2(4x)+4cos2(4x)cos2(4x)tan2(4x)- \frac{4 \sin^{2}{\left(4 x \right)} + 4 \cos^{2}{\left(4 x \right)}}{\cos^{2}{\left(4 x \right)} \tan^{2}{\left(4 x \right)}}

      Method #2

      1. Rewrite the function to be differentiated:

        cot(4x)=cos(4x)sin(4x)\cot{\left(4 x \right)} = \frac{\cos{\left(4 x \right)}}{\sin{\left(4 x \right)}}

      2. Apply the quotient rule, which is:

        ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

        f(x)=cos(4x)f{\left(x \right)} = \cos{\left(4 x \right)} and g(x)=sin(4x)g{\left(x \right)} = \sin{\left(4 x \right)}.

        To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

        1. Let u=4xu = 4 x.

        2. The derivative of cosine is negative sine:

          dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

        3. Then, apply the chain rule. Multiply by ddx4x\frac{d}{d x} 4 x:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 44

          The result of the chain rule is:

          4sin(4x)- 4 \sin{\left(4 x \right)}

        To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

        1. Let u=4xu = 4 x.

        2. The derivative of sine is cosine:

          ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

        3. Then, apply the chain rule. Multiply by ddx4x\frac{d}{d x} 4 x:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 44

          The result of the chain rule is:

          4cos(4x)4 \cos{\left(4 x \right)}

        Now plug in to the quotient rule:

        4sin2(4x)4cos2(4x)sin2(4x)\frac{- 4 \sin^{2}{\left(4 x \right)} - 4 \cos^{2}{\left(4 x \right)}}{\sin^{2}{\left(4 x \right)}}

    g(x)=log(3x)g{\left(x \right)} = \log{\left(3 x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=3xu = 3 x.

    2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

    3. Then, apply the chain rule. Multiply by ddx3x\frac{d}{d x} 3 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 33

      The result of the chain rule is:

      1x\frac{1}{x}

    The result is: (4sin2(4x)+4cos2(4x))log(3x)cos2(4x)tan2(4x)+cot(4x)x- \frac{\left(4 \sin^{2}{\left(4 x \right)} + 4 \cos^{2}{\left(4 x \right)}\right) \log{\left(3 x \right)}}{\cos^{2}{\left(4 x \right)} \tan^{2}{\left(4 x \right)}} + \frac{\cot{\left(4 x \right)}}{x}

  2. Now simplify:

    4log(3x)sin2(4x)+cot(4x)x- \frac{4 \log{\left(3 x \right)}}{\sin^{2}{\left(4 x \right)}} + \frac{\cot{\left(4 x \right)}}{x}


The answer is:

4log(3x)sin2(4x)+cot(4x)x- \frac{4 \log{\left(3 x \right)}}{\sin^{2}{\left(4 x \right)}} + \frac{\cot{\left(4 x \right)}}{x}

The graph
02468-8-6-4-2-1010-100005000
The first derivative [src]
cot(4*x)   /          2     \         
-------- + \-4 - 4*cot (4*x)/*log(3*x)
   x                                  
(4cot2(4x)4)log(3x)+cot(4x)x\left(- 4 \cot^{2}{\left(4 x \right)} - 4\right) \log{\left(3 x \right)} + \frac{\cot{\left(4 x \right)}}{x}
The second derivative [src]
               /       2     \                                       
  cot(4*x)   8*\1 + cot (4*x)/      /       2     \                  
- -------- - ----------------- + 32*\1 + cot (4*x)/*cot(4*x)*log(3*x)
      2              x                                               
     x                                                               
32(cot2(4x)+1)log(3x)cot(4x)8(cot2(4x)+1)xcot(4x)x232 \left(\cot^{2}{\left(4 x \right)} + 1\right) \log{\left(3 x \right)} \cot{\left(4 x \right)} - \frac{8 \left(\cot^{2}{\left(4 x \right)} + 1\right)}{x} - \frac{\cot{\left(4 x \right)}}{x^{2}}
The third derivative [src]
  /             /       2     \                                                      /       2     \         \
  |cot(4*x)   6*\1 + cot (4*x)/      /       2     \ /         2     \            48*\1 + cot (4*x)/*cot(4*x)|
2*|-------- + ----------------- - 64*\1 + cot (4*x)/*\1 + 3*cot (4*x)/*log(3*x) + ---------------------------|
  |    3               2                                                                       x             |
  \   x               x                                                                                      /
2(64(cot2(4x)+1)(3cot2(4x)+1)log(3x)+48(cot2(4x)+1)cot(4x)x+6(cot2(4x)+1)x2+cot(4x)x3)2 \left(- 64 \left(\cot^{2}{\left(4 x \right)} + 1\right) \left(3 \cot^{2}{\left(4 x \right)} + 1\right) \log{\left(3 x \right)} + \frac{48 \left(\cot^{2}{\left(4 x \right)} + 1\right) \cot{\left(4 x \right)}}{x} + \frac{6 \left(\cot^{2}{\left(4 x \right)} + 1\right)}{x^{2}} + \frac{\cot{\left(4 x \right)}}{x^{3}}\right)