Mister Exam

Derivative of cosx×tgx+sinx×ctgx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
cos(x)*tan(x) + sin(x)*cot(x)
$$\sin{\left(x \right)} \cot{\left(x \right)} + \cos{\left(x \right)} \tan{\left(x \right)}$$
cos(x)*tan(x) + sin(x)*cot(x)
Detail solution
  1. Differentiate term by term:

    1. Apply the product rule:

      ; to find :

      1. The derivative of cosine is negative sine:

      ; to find :

      1. Rewrite the function to be differentiated:

      2. Apply the quotient rule, which is:

        and .

        To find :

        1. The derivative of sine is cosine:

        To find :

        1. The derivative of cosine is negative sine:

        Now plug in to the quotient rule:

      The result is:

    2. Apply the product rule:

      ; to find :

      1. The derivative of sine is cosine:

      ; to find :

      1. There are multiple ways to do this derivative.

        Method #1

        1. Rewrite the function to be differentiated:

        2. Let .

        3. Apply the power rule: goes to

        4. Then, apply the chain rule. Multiply by :

          The result of the chain rule is:

        Method #2

        1. Rewrite the function to be differentiated:

        2. Apply the quotient rule, which is:

          and .

          To find :

          1. The derivative of cosine is negative sine:

          To find :

          1. The derivative of sine is cosine:

          Now plug in to the quotient rule:

      The result is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
/       2   \          /        2   \                                       
\1 + tan (x)/*cos(x) + \-1 - cot (x)/*sin(x) + cos(x)*cot(x) - sin(x)*tan(x)
$$\left(\tan^{2}{\left(x \right)} + 1\right) \cos{\left(x \right)} + \left(- \cot^{2}{\left(x \right)} - 1\right) \sin{\left(x \right)} - \sin{\left(x \right)} \tan{\left(x \right)} + \cos{\left(x \right)} \cot{\left(x \right)}$$
The second derivative [src]
                                   /       2   \            /       2   \            /       2   \                   /       2   \              
-cos(x)*tan(x) - cot(x)*sin(x) - 2*\1 + cot (x)/*cos(x) - 2*\1 + tan (x)/*sin(x) + 2*\1 + cot (x)/*cot(x)*sin(x) + 2*\1 + tan (x)/*cos(x)*tan(x)
$$- 2 \left(\tan^{2}{\left(x \right)} + 1\right) \sin{\left(x \right)} + 2 \left(\tan^{2}{\left(x \right)} + 1\right) \cos{\left(x \right)} \tan{\left(x \right)} + 2 \left(\cot^{2}{\left(x \right)} + 1\right) \sin{\left(x \right)} \cot{\left(x \right)} - 2 \left(\cot^{2}{\left(x \right)} + 1\right) \cos{\left(x \right)} - \sin{\left(x \right)} \cot{\left(x \right)} - \cos{\left(x \right)} \tan{\left(x \right)}$$
The third derivative [src]
                                                                        2                         2                                                                                                                                                                  
                                  /       2   \            /       2   \             /       2   \             /       2   \            /       2   \                      2    /       2   \               2    /       2   \            /       2   \              
sin(x)*tan(x) - cos(x)*cot(x) - 3*\1 + tan (x)/*cos(x) - 2*\1 + cot (x)/ *sin(x) + 2*\1 + tan (x)/ *cos(x) + 3*\1 + cot (x)/*sin(x) - 6*\1 + tan (x)/*sin(x)*tan(x) - 4*cot (x)*\1 + cot (x)/*sin(x) + 4*tan (x)*\1 + tan (x)/*cos(x) + 6*\1 + cot (x)/*cos(x)*cot(x)
$$2 \left(\tan^{2}{\left(x \right)} + 1\right)^{2} \cos{\left(x \right)} - 6 \left(\tan^{2}{\left(x \right)} + 1\right) \sin{\left(x \right)} \tan{\left(x \right)} + 4 \left(\tan^{2}{\left(x \right)} + 1\right) \cos{\left(x \right)} \tan^{2}{\left(x \right)} - 3 \left(\tan^{2}{\left(x \right)} + 1\right) \cos{\left(x \right)} - 2 \left(\cot^{2}{\left(x \right)} + 1\right)^{2} \sin{\left(x \right)} - 4 \left(\cot^{2}{\left(x \right)} + 1\right) \sin{\left(x \right)} \cot^{2}{\left(x \right)} + 3 \left(\cot^{2}{\left(x \right)} + 1\right) \sin{\left(x \right)} + 6 \left(\cot^{2}{\left(x \right)} + 1\right) \cos{\left(x \right)} \cot{\left(x \right)} + \sin{\left(x \right)} \tan{\left(x \right)} - \cos{\left(x \right)} \cot{\left(x \right)}$$