Mister Exam

Derivative of cost/(-2sint)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  cos(t) 
---------
-2*sin(t)
$$\frac{\cos{\left(t \right)}}{\left(-1\right) 2 \sin{\left(t \right)}}$$
cos(t)/((-2*sin(t)))
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of cosine is negative sine:

    To find :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. The derivative of sine is cosine:

      So, the result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
    2                      
 cos (t)      -1           
--------- - --------*sin(t)
     2      2*sin(t)       
2*sin (t)                  
$$- - \frac{1}{2 \sin{\left(t \right)}} \sin{\left(t \right)} + \frac{\cos^{2}{\left(t \right)}}{2 \sin^{2}{\left(t \right)}}$$
The second derivative [src]
 /       2   \        
 |    cos (t)|        
-|1 + -------|*cos(t) 
 |       2   |        
 \    sin (t)/        
----------------------
        sin(t)        
$$- \frac{\left(1 + \frac{\cos^{2}{\left(t \right)}}{\sin^{2}{\left(t \right)}}\right) \cos{\left(t \right)}}{\sin{\left(t \right)}}$$
The third derivative [src]
                        /         2   \
                   2    |    6*cos (t)|
                cos (t)*|5 + ---------|
         2              |        2    |
    3*cos (t)           \     sin (t) /
1 + --------- + -----------------------
         2                  2          
    2*sin (t)          2*sin (t)       
$$\frac{\left(5 + \frac{6 \cos^{2}{\left(t \right)}}{\sin^{2}{\left(t \right)}}\right) \cos^{2}{\left(t \right)}}{2 \sin^{2}{\left(t \right)}} + 1 + \frac{3 \cos^{2}{\left(t \right)}}{2 \sin^{2}{\left(t \right)}}$$