cos(t) --------- -2*sin(t)
cos(t)/((-2*sin(t)))
Apply the quotient rule, which is:
and .
To find :
The derivative of cosine is negative sine:
To find :
The derivative of a constant times a function is the constant times the derivative of the function.
The derivative of sine is cosine:
So, the result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
2
cos (t) -1
--------- - --------*sin(t)
2 2*sin(t)
2*sin (t)
/ 2 \
| cos (t)|
-|1 + -------|*cos(t)
| 2 |
\ sin (t)/
----------------------
sin(t)
/ 2 \
2 | 6*cos (t)|
cos (t)*|5 + ---------|
2 | 2 |
3*cos (t) \ sin (t) /
1 + --------- + -----------------------
2 2
2*sin (t) 2*sin (t)