Detail solution
-
Apply the product rule:
; to find :
-
; to find :
-
The derivative of sine is cosine:
The result is:
-
Now simplify:
The answer is:
The first derivative
[src]
x x
2 *cos(x) + 2 *log(2)*sin(x)
$$2^{x} \log{\left(2 \right)} \sin{\left(x \right)} + 2^{x} \cos{\left(x \right)}$$
The second derivative
[src]
x / 2 \
2 *\-sin(x) + log (2)*sin(x) + 2*cos(x)*log(2)/
$$2^{x} \left(- \sin{\left(x \right)} + \log{\left(2 \right)}^{2} \sin{\left(x \right)} + 2 \log{\left(2 \right)} \cos{\left(x \right)}\right)$$
The third derivative
[src]
x / 3 2 \
2 *\-cos(x) + log (2)*sin(x) - 3*log(2)*sin(x) + 3*log (2)*cos(x)/
$$2^{x} \left(- 3 \log{\left(2 \right)} \sin{\left(x \right)} + \log{\left(2 \right)}^{3} \sin{\left(x \right)} - \cos{\left(x \right)} + 3 \log{\left(2 \right)}^{2} \cos{\left(x \right)}\right)$$