4*cos(t) --------- -2*sin(t)
(4*cos(t))/((-2*sin(t)))
Apply the quotient rule, which is:
and .
To find :
The derivative of a constant times a function is the constant times the derivative of the function.
The derivative of cosine is negative sine:
So, the result is:
To find :
The derivative of a constant times a function is the constant times the derivative of the function.
The derivative of sine is cosine:
So, the result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
2
-1 2*cos (t)
- 4*--------*sin(t) + ---------
2*sin(t) 2
sin (t)
/ 2 \
| 2*cos (t)|
-2*|2 + ---------|*cos(t)
| 2 |
\ sin (t) /
-------------------------
sin(t)
/ / 2 \\ | 2 | 6*cos (t)|| | cos (t)*|5 + ---------|| | 2 | 2 || | 3*cos (t) \ sin (t) /| 2*|2 + --------- + -----------------------| | 2 2 | \ sin (t) sin (t) /