Mister Exam

Derivative of (4cos(t))/(-2sin(t))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 4*cos(t)
---------
-2*sin(t)
$$\frac{4 \cos{\left(t \right)}}{\left(-1\right) 2 \sin{\left(t \right)}}$$
(4*cos(t))/((-2*sin(t)))
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. The derivative of cosine is negative sine:

      So, the result is:

    To find :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. The derivative of sine is cosine:

      So, the result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                           2   
      -1              2*cos (t)
- 4*--------*sin(t) + ---------
    2*sin(t)              2    
                       sin (t) 
$$- 4 \left(- \frac{1}{2 \sin{\left(t \right)}}\right) \sin{\left(t \right)} + \frac{2 \cos^{2}{\left(t \right)}}{\sin^{2}{\left(t \right)}}$$
The second derivative [src]
   /         2   \       
   |    2*cos (t)|       
-2*|2 + ---------|*cos(t)
   |        2    |       
   \     sin (t) /       
-------------------------
          sin(t)         
$$- \frac{2 \left(2 + \frac{2 \cos^{2}{\left(t \right)}}{\sin^{2}{\left(t \right)}}\right) \cos{\left(t \right)}}{\sin{\left(t \right)}}$$
The third derivative [src]
  /                        /         2   \\
  |                   2    |    6*cos (t)||
  |                cos (t)*|5 + ---------||
  |         2              |        2    ||
  |    3*cos (t)           \     sin (t) /|
2*|2 + --------- + -----------------------|
  |        2                  2           |
  \     sin (t)            sin (t)        /
$$2 \left(\frac{\left(5 + \frac{6 \cos^{2}{\left(t \right)}}{\sin^{2}{\left(t \right)}}\right) \cos^{2}{\left(t \right)}}{\sin^{2}{\left(t \right)}} + 2 + \frac{3 \cos^{2}{\left(t \right)}}{\sin^{2}{\left(t \right)}}\right)$$