Mister Exam

Derivative of cos(sinx)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
cos(sin(x))
$$\cos{\left(\sin{\left(x \right)} \right)}$$
cos(sin(x))
Detail solution
  1. Let .

  2. The derivative of cosine is negative sine:

  3. Then, apply the chain rule. Multiply by :

    1. The derivative of sine is cosine:

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
-cos(x)*sin(sin(x))
$$- \sin{\left(\sin{\left(x \right)} \right)} \cos{\left(x \right)}$$
The second derivative [src]
                        2               
sin(x)*sin(sin(x)) - cos (x)*cos(sin(x))
$$\sin{\left(x \right)} \sin{\left(\sin{\left(x \right)} \right)} - \cos^{2}{\left(x \right)} \cos{\left(\sin{\left(x \right)} \right)}$$
The third derivative [src]
/   2                                                    \       
\cos (x)*sin(sin(x)) + 3*cos(sin(x))*sin(x) + sin(sin(x))/*cos(x)
$$\left(3 \sin{\left(x \right)} \cos{\left(\sin{\left(x \right)} \right)} + \sin{\left(\sin{\left(x \right)} \right)} \cos^{2}{\left(x \right)} + \sin{\left(\sin{\left(x \right)} \right)}\right) \cos{\left(x \right)}$$
The graph
Derivative of cos(sinx)