Detail solution
-
Let .
-
The derivative of cosine is negative sine:
-
Then, apply the chain rule. Multiply by :
-
The derivative of sine is cosine:
The result of the chain rule is:
The answer is:
The first derivative
[src]
$$- \sin{\left(\sin{\left(x \right)} \right)} \cos{\left(x \right)}$$
The second derivative
[src]
2
sin(x)*sin(sin(x)) - cos (x)*cos(sin(x))
$$\sin{\left(x \right)} \sin{\left(\sin{\left(x \right)} \right)} - \cos^{2}{\left(x \right)} \cos{\left(\sin{\left(x \right)} \right)}$$
The third derivative
[src]
/ 2 \
\cos (x)*sin(sin(x)) + 3*cos(sin(x))*sin(x) + sin(sin(x))/*cos(x)
$$\left(3 \sin{\left(x \right)} \cos{\left(\sin{\left(x \right)} \right)} + \sin{\left(\sin{\left(x \right)} \right)} \cos^{2}{\left(x \right)} + \sin{\left(\sin{\left(x \right)} \right)}\right) \cos{\left(x \right)}$$