Mister Exam

Other calculators

Derivative of arccos(sin(x))^3

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    3        
acos (sin(x))
$$\operatorname{acos}^{3}{\left(\sin{\left(x \right)} \right)}$$
acos(sin(x))^3
The graph
The first derivative [src]
       2               
-3*acos (sin(x))*cos(x)
-----------------------
       _____________   
      /        2       
    \/  1 - sin (x)    
$$- \frac{3 \cos{\left(x \right)} \operatorname{acos}^{2}{\left(\sin{\left(x \right)} \right)}}{\sqrt{1 - \sin^{2}{\left(x \right)}}}$$
The second derivative [src]
  /        2                                 2                       \             
  |   2*cos (x)     acos(sin(x))*sin(x)   cos (x)*acos(sin(x))*sin(x)|             
3*|- ------------ + ------------------- - ---------------------------|*acos(sin(x))
  |          2           _____________                       3/2     |             
  |  -1 + sin (x)       /        2              /       2   \        |             
  \                   \/  1 - sin (x)           \1 - sin (x)/        /             
$$3 \left(- \frac{2 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)} - 1} + \frac{\sin{\left(x \right)} \operatorname{acos}{\left(\sin{\left(x \right)} \right)}}{\sqrt{1 - \sin^{2}{\left(x \right)}}} - \frac{\sin{\left(x \right)} \cos^{2}{\left(x \right)} \operatorname{acos}{\left(\sin{\left(x \right)} \right)}}{\left(1 - \sin^{2}{\left(x \right)}\right)^{\frac{3}{2}}}\right) \operatorname{acos}{\left(\sin{\left(x \right)} \right)}$$
The third derivative [src]
  /     2                     2              2            2            2            2                                    2            2       2           2                       \       
  | acos (sin(x))        2*cos (x)       acos (sin(x))*cos (x)   3*acos (sin(x))*sin (x)   6*acos(sin(x))*sin(x)   3*acos (sin(x))*cos (x)*sin (x)   6*cos (x)*acos(sin(x))*sin(x)|       
3*|---------------- - ---------------- - --------------------- + ----------------------- + --------------------- - ------------------------------- + -----------------------------|*cos(x)
  |   _____________                3/2                   3/2                      3/2                   2                               5/2                               2       |       
  |  /        2       /       2   \         /       2   \            /       2   \              -1 + sin (x)               /       2   \                    /        2   \        |       
  \\/  1 - sin (x)    \1 - sin (x)/         \1 - sin (x)/            \1 - sin (x)/                                         \1 - sin (x)/                    \-1 + sin (x)/        /       
$$3 \left(\frac{6 \sin{\left(x \right)} \operatorname{acos}{\left(\sin{\left(x \right)} \right)}}{\sin^{2}{\left(x \right)} - 1} + \frac{6 \sin{\left(x \right)} \cos^{2}{\left(x \right)} \operatorname{acos}{\left(\sin{\left(x \right)} \right)}}{\left(\sin^{2}{\left(x \right)} - 1\right)^{2}} + \frac{\operatorname{acos}^{2}{\left(\sin{\left(x \right)} \right)}}{\sqrt{1 - \sin^{2}{\left(x \right)}}} + \frac{3 \sin^{2}{\left(x \right)} \operatorname{acos}^{2}{\left(\sin{\left(x \right)} \right)}}{\left(1 - \sin^{2}{\left(x \right)}\right)^{\frac{3}{2}}} - \frac{\cos^{2}{\left(x \right)} \operatorname{acos}^{2}{\left(\sin{\left(x \right)} \right)}}{\left(1 - \sin^{2}{\left(x \right)}\right)^{\frac{3}{2}}} - \frac{2 \cos^{2}{\left(x \right)}}{\left(1 - \sin^{2}{\left(x \right)}\right)^{\frac{3}{2}}} - \frac{3 \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)} \operatorname{acos}^{2}{\left(\sin{\left(x \right)} \right)}}{\left(1 - \sin^{2}{\left(x \right)}\right)^{\frac{5}{2}}}\right) \cos{\left(x \right)}$$