-cos(sin(x))
-------------
2
sin (x)
(-cos(sin(x)))/sin(x)^2
Apply the quotient rule, which is:
and .
To find :
The derivative of a constant times a function is the constant times the derivative of the function.
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
So, the result is:
To find :
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
cos(x)*sin(sin(x)) 2*cos(x)*cos(sin(x))
------------------ + --------------------
2 3
sin (x) sin (x)
/ / 2 \ 2 \
| 2 | 3*cos (x)| 4*cos (x)*sin(sin(x))|
-|sin(x)*sin(sin(x)) - cos (x)*cos(sin(x)) + 2*|1 + ---------|*cos(sin(x)) + ---------------------|
| | 2 | sin(x) |
\ \ sin (x) / /
----------------------------------------------------------------------------------------------------
2
sin (x)
/ / 2 \ \
| | 3*cos (x)| |
| 8*|2 + ---------|*cos(sin(x))|
| / 2 \ / 2 \ | 2 | |
| 2 6*\sin(x)*sin(sin(x)) - cos (x)*cos(sin(x))/ | 3*cos (x)| \ sin (x) / |
|-sin(sin(x)) - cos (x)*sin(sin(x)) - 3*cos(sin(x))*sin(x) + -------------------------------------------- + 6*|1 + ---------|*sin(sin(x)) + -----------------------------|*cos(x)
| sin(x) | 2 | sin(x) |
\ \ sin (x) / /
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
2
sin (x)