The first derivative
[src]
2
cosh(x) sinh (x)
------------ + -------- + cosh(x)*log(cosh(x))
2 cosh(x)
1 + sinh (x)
$$\log{\left(\cosh{\left(x \right)} \right)} \cosh{\left(x \right)} + \frac{\sinh^{2}{\left(x \right)}}{\cosh{\left(x \right)}} + \frac{\cosh{\left(x \right)}}{\sinh^{2}{\left(x \right)} + 1}$$
The second derivative
[src]
/ 2 2 \
| 1 sinh (x) 2*cosh (x) |
|3 + ------------ - -------- - --------------- + log(cosh(x))|*sinh(x)
| 2 2 2 |
| 1 + sinh (x) cosh (x) / 2 \ |
\ \1 + sinh (x)/ /
$$\left(\log{\left(\cosh{\left(x \right)} \right)} - \frac{\sinh^{2}{\left(x \right)}}{\cosh^{2}{\left(x \right)}} + 3 - \frac{2 \cosh^{2}{\left(x \right)}}{\left(\sinh^{2}{\left(x \right)} + 1\right)^{2}} + \frac{1}{\sinh^{2}{\left(x \right)} + 1}\right) \sinh{\left(x \right)}$$
The third derivative
[src]
3 2 4 2 3 2
cosh(x) 2*cosh (x) 2*sinh (x) 2*sinh (x) 6*sinh (x)*cosh(x) 8*cosh (x)*sinh (x)
3*cosh(x) + ------------ + cosh(x)*log(cosh(x)) - --------------- - ---------- + ---------- - ------------------ + -------------------
2 2 cosh(x) 3 2 3
1 + sinh (x) / 2 \ cosh (x) / 2 \ / 2 \
\1 + sinh (x)/ \1 + sinh (x)/ \1 + sinh (x)/
$$\log{\left(\cosh{\left(x \right)} \right)} \cosh{\left(x \right)} + \frac{8 \sinh^{2}{\left(x \right)} \cosh^{3}{\left(x \right)}}{\left(\sinh^{2}{\left(x \right)} + 1\right)^{3}} + \frac{2 \sinh^{4}{\left(x \right)}}{\cosh^{3}{\left(x \right)}} - \frac{2 \sinh^{2}{\left(x \right)}}{\cosh{\left(x \right)}} + 3 \cosh{\left(x \right)} - \frac{6 \sinh^{2}{\left(x \right)} \cosh{\left(x \right)}}{\left(\sinh^{2}{\left(x \right)} + 1\right)^{2}} - \frac{2 \cosh^{3}{\left(x \right)}}{\left(\sinh^{2}{\left(x \right)} + 1\right)^{2}} + \frac{\cosh{\left(x \right)}}{\sinh^{2}{\left(x \right)} + 1}$$