Mister Exam

Derivative of cosx/3

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
cos(x)
------
  3   
cos(x)3\frac{\cos{\left(x \right)}}{3}
d /cos(x)\
--|------|
dx\  3   /
ddxcos(x)3\frac{d}{d x} \frac{\cos{\left(x \right)}}{3}
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. The derivative of cosine is negative sine:

      ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

    So, the result is: sin(x)3- \frac{\sin{\left(x \right)}}{3}


The answer is:

sin(x)3- \frac{\sin{\left(x \right)}}{3}

The graph
02468-8-6-4-2-10100.5-0.5
The first derivative [src]
-sin(x) 
--------
   3    
sin(x)3- \frac{\sin{\left(x \right)}}{3}
The second derivative [src]
-cos(x) 
--------
   3    
cos(x)3- \frac{\cos{\left(x \right)}}{3}
The third derivative [src]
sin(x)
------
  3   
sin(x)3\frac{\sin{\left(x \right)}}{3}
The graph
Derivative of cosx/3