Mister Exam

Derivative of arcctg2x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
acot(2*x)
$$\operatorname{acot}{\left(2 x \right)}$$
acot(2*x)
The graph
The first derivative [src]
  -2    
--------
       2
1 + 4*x 
$$- \frac{2}{4 x^{2} + 1}$$
The second derivative [src]
    16*x   
-----------
          2
/       2\ 
\1 + 4*x / 
$$\frac{16 x}{\left(4 x^{2} + 1\right)^{2}}$$
The third derivative [src]
   /         2  \
   |     16*x   |
16*|1 - --------|
   |           2|
   \    1 + 4*x /
-----------------
             2   
   /       2\    
   \1 + 4*x /    
$$\frac{16 \left(- \frac{16 x^{2}}{4 x^{2} + 1} + 1\right)}{\left(4 x^{2} + 1\right)^{2}}$$