Mister Exam

Other calculators

Derivative of arcctg(2x-3)*cos^4x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
                 4   
acot(2*x - 3)*cos (x)
$$\cos^{4}{\left(x \right)} \operatorname{acot}{\left(2 x - 3 \right)}$$
acot(2*x - 3)*cos(x)^4
The graph
The first derivative [src]
         4                                       
    2*cos (x)           3                        
- -------------- - 4*cos (x)*acot(2*x - 3)*sin(x)
               2                                 
  1 + (2*x - 3)                                  
$$- 4 \sin{\left(x \right)} \cos^{3}{\left(x \right)} \operatorname{acot}{\left(2 x - 3 \right)} - \frac{2 \cos^{4}{\left(x \right)}}{\left(2 x - 3\right)^{2} + 1}$$
The second derivative [src]
          /                                              2                                \
     2    |/     2           2   \                  2*cos (x)*(-3 + 2*x)   4*cos(x)*sin(x)|
4*cos (x)*|\- cos (x) + 3*sin (x)/*acot(-3 + 2*x) + -------------------- + ---------------|
          |                                                           2                  2|
          |                                          /              2\     1 + (-3 + 2*x) |
          \                                          \1 + (-3 + 2*x) /                    /
$$4 \left(\frac{2 \left(2 x - 3\right) \cos^{2}{\left(x \right)}}{\left(\left(2 x - 3\right)^{2} + 1\right)^{2}} + \left(3 \sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \operatorname{acot}{\left(2 x - 3 \right)} + \frac{4 \sin{\left(x \right)} \cos{\left(x \right)}}{\left(2 x - 3\right)^{2} + 1}\right) \cos^{2}{\left(x \right)}$$
The third derivative [src]
   /                                                            /                  2 \                                                                  \       
   |                                                       3    |      4*(-3 + 2*x)  |                                                                  |       
   |                                                  2*cos (x)*|-1 + ---------------|                                                                  |       
   |                                                            |                   2|     /     2           2   \                2                     |       
   |/       2           2   \                                   \     1 + (-3 + 2*x) /   3*\- cos (x) + 3*sin (x)/*cos(x)   12*cos (x)*(-3 + 2*x)*sin(x)|       
-8*|\- 5*cos (x) + 3*sin (x)/*acot(-3 + 2*x)*sin(x) + -------------------------------- + -------------------------------- + ----------------------------|*cos(x)
   |                                                                          2                                2                                  2     |       
   |                                                         /              2\                   1 + (-3 + 2*x)                  /              2\      |       
   \                                                         \1 + (-3 + 2*x) /                                                   \1 + (-3 + 2*x) /      /       
$$- 8 \left(\frac{12 \left(2 x - 3\right) \sin{\left(x \right)} \cos^{2}{\left(x \right)}}{\left(\left(2 x - 3\right)^{2} + 1\right)^{2}} + \frac{2 \left(\frac{4 \left(2 x - 3\right)^{2}}{\left(2 x - 3\right)^{2} + 1} - 1\right) \cos^{3}{\left(x \right)}}{\left(\left(2 x - 3\right)^{2} + 1\right)^{2}} + \left(3 \sin^{2}{\left(x \right)} - 5 \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} \operatorname{acot}{\left(2 x - 3 \right)} + \frac{3 \left(3 \sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \cos{\left(x \right)}}{\left(2 x - 3\right)^{2} + 1}\right) \cos{\left(x \right)}$$