Mister Exam

Derivative of arcctg(2x-3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
acot(2*x - 3)
$$\operatorname{acot}{\left(2 x - 3 \right)}$$
acot(2*x - 3)
The graph
The first derivative [src]
     -2       
--------------
             2
1 + (2*x - 3) 
$$- \frac{2}{\left(2 x - 3\right)^{2} + 1}$$
The second derivative [src]
   8*(-3 + 2*x)   
------------------
                 2
/              2\ 
\1 + (-3 + 2*x) / 
$$\frac{8 \left(2 x - 3\right)}{\left(\left(2 x - 3\right)^{2} + 1\right)^{2}}$$
The third derivative [src]
   /                 2 \
   |     4*(-3 + 2*x)  |
16*|1 - ---------------|
   |                  2|
   \    1 + (-3 + 2*x) /
------------------------
                    2   
   /              2\    
   \1 + (-3 + 2*x) /    
$$\frac{16 \left(- \frac{4 \left(2 x - 3\right)^{2}}{\left(2 x - 3\right)^{2} + 1} + 1\right)}{\left(\left(2 x - 3\right)^{2} + 1\right)^{2}}$$