The second derivative
[src]
/ 2 \
| / 3 + 4*x\ |
| 2*|2 - -------| *(3 + 4*x)|
| 3*(3 + 4*x) \ x / |
2*|-8 + ----------- + --------------------------|
| x / 2\ |
| 3 | (3 + 4*x) | |
| x *|1 - ----------| |
| | 4 | |
\ \ x / /
-------------------------------------------------
________________
/ 2
3 / (3 + 4*x)
x * / 1 - ----------
/ 4
\/ x
$$\frac{2 \left(-8 + \frac{3 \left(4 x + 3\right)}{x} + \frac{2 \left(2 - \frac{4 x + 3}{x}\right)^{2} \left(4 x + 3\right)}{x^{3} \left(1 - \frac{\left(4 x + 3\right)^{2}}{x^{4}}\right)}\right)}{x^{3} \sqrt{1 - \frac{\left(4 x + 3\right)^{2}}{x^{4}}}}$$
The third derivative
[src]
/ / 2\ \
| / 3 + 4*x\ | 16*(3 + 4*x) 5*(3 + 4*x) | 3 |
| |2 - -------|*|8 - ------------ + ------------| / 3 + 4*x\ 2 / 3 + 4*x\ / 3*(3 + 4*x)\|
| \ x / | x 2 | 6*|2 - -------| *(3 + 4*x) 2*|2 - -------|*(3 + 4*x)*|8 - -----------||
| 6*(3 + 4*x) \ x / \ x / \ x / \ x /|
4*|18 - ----------- + ----------------------------------------------- + --------------------------- - -------------------------------------------|
| x / 2\ 2 / 2\ |
| 2 | (3 + 4*x) | / 2\ 3 | (3 + 4*x) | |
| x *|1 - ----------| 6 | (3 + 4*x) | x *|1 - ----------| |
| | 4 | x *|1 - ----------| | 4 | |
| \ x / | 4 | \ x / |
\ \ x / /
--------------------------------------------------------------------------------------------------------------------------------------------------
________________
/ 2
4 / (3 + 4*x)
x * / 1 - ----------
/ 4
\/ x
$$\frac{4 \left(18 - \frac{6 \left(4 x + 3\right)}{x} + \frac{\left(2 - \frac{4 x + 3}{x}\right) \left(8 - \frac{16 \left(4 x + 3\right)}{x} + \frac{5 \left(4 x + 3\right)^{2}}{x^{2}}\right)}{x^{2} \left(1 - \frac{\left(4 x + 3\right)^{2}}{x^{4}}\right)} - \frac{2 \left(2 - \frac{4 x + 3}{x}\right) \left(8 - \frac{3 \left(4 x + 3\right)}{x}\right) \left(4 x + 3\right)}{x^{3} \left(1 - \frac{\left(4 x + 3\right)^{2}}{x^{4}}\right)} + \frac{6 \left(2 - \frac{4 x + 3}{x}\right)^{3} \left(4 x + 3\right)^{2}}{x^{6} \left(1 - \frac{\left(4 x + 3\right)^{2}}{x^{4}}\right)^{2}}\right)}{x^{4} \sqrt{1 - \frac{\left(4 x + 3\right)^{2}}{x^{4}}}}$$