Mister Exam

Other calculators


arccos^2(x)

Derivative of arccos^2(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    2   
acos (x)
$$\operatorname{acos}^{2}{\left(x \right)}$$
d /    2   \
--\acos (x)/
dx          
$$\frac{d}{d x} \operatorname{acos}^{2}{\left(x \right)}$$
The graph
The first derivative [src]
 -2*acos(x)
-----------
   ________
  /      2 
\/  1 - x  
$$- \frac{2 \operatorname{acos}{\left(x \right)}}{\sqrt{1 - x^{2}}}$$
The second derivative [src]
   /   1       x*acos(x) \
-2*|------- + -----------|
   |      2           3/2|
   |-1 + x    /     2\   |
   \          \1 - x /   /
$$- 2 \left(\frac{x \operatorname{acos}{\left(x \right)}}{\left(1 - x^{2}\right)^{\frac{3}{2}}} + \frac{1}{x^{2} - 1}\right)$$
The third derivative [src]
  /                                2        \
  |    acos(x)        3*x       3*x *acos(x)|
2*|- ----------- + ---------- - ------------|
  |          3/2            2           5/2 |
  |  /     2\      /      2\    /     2\    |
  \  \1 - x /      \-1 + x /    \1 - x /    /
$$2 \left(- \frac{3 x^{2} \operatorname{acos}{\left(x \right)}}{\left(1 - x^{2}\right)^{\frac{5}{2}}} + \frac{3 x}{\left(x^{2} - 1\right)^{2}} - \frac{\operatorname{acos}{\left(x \right)}}{\left(1 - x^{2}\right)^{\frac{3}{2}}}\right)$$
The graph
Derivative of arccos^2(x)