The first derivative
[src]
-2*acos(x)
-----------
________
/ 2
\/ 1 - x
$$- \frac{2 \operatorname{acos}{\left(x \right)}}{\sqrt{1 - x^{2}}}$$
The second derivative
[src]
/ 1 x*acos(x) \
-2*|------- + -----------|
| 2 3/2|
|-1 + x / 2\ |
\ \1 - x / /
$$- 2 \left(\frac{x \operatorname{acos}{\left(x \right)}}{\left(1 - x^{2}\right)^{\frac{3}{2}}} + \frac{1}{x^{2} - 1}\right)$$
The third derivative
[src]
/ 2 \
| acos(x) 3*x 3*x *acos(x)|
2*|- ----------- + ---------- - ------------|
| 3/2 2 5/2 |
| / 2\ / 2\ / 2\ |
\ \1 - x / \-1 + x / \1 - x / /
$$2 \left(- \frac{3 x^{2} \operatorname{acos}{\left(x \right)}}{\left(1 - x^{2}\right)^{\frac{5}{2}}} + \frac{3 x}{\left(x^{2} - 1\right)^{2}} - \frac{\operatorname{acos}{\left(x \right)}}{\left(1 - x^{2}\right)^{\frac{3}{2}}}\right)$$