Mister Exam

Other calculators


1/arccos^2x

Derivative of 1/arccos^2x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     1    
1*--------
      2   
  acos (x)
$$1 \cdot \frac{1}{\operatorname{acos}^{2}{\left(x \right)}}$$
d /     1    \
--|1*--------|
dx|      2   |
  \  acos (x)/
$$\frac{d}{d x} 1 \cdot \frac{1}{\operatorname{acos}^{2}{\left(x \right)}}$$
The graph
The first derivative [src]
             2              
----------------------------
   ________                 
  /      2              2   
\/  1 - x  *acos(x)*acos (x)
$$\frac{2}{\sqrt{- x^{2} + 1} \operatorname{acos}{\left(x \right)} \operatorname{acos}^{2}{\left(x \right)}}$$
The second derivative [src]
  /     x                3        \
2*|----------- - -----------------|
  |        3/2   /      2\        |
  |/     2\      \-1 + x /*acos(x)|
  \\1 - x /                       /
-----------------------------------
                  3                
              acos (x)             
$$\frac{2 \left(\frac{x}{\left(- x^{2} + 1\right)^{\frac{3}{2}}} - \frac{3}{\left(x^{2} - 1\right) \operatorname{acos}{\left(x \right)}}\right)}{\operatorname{acos}^{3}{\left(x \right)}}$$
The third derivative [src]
  /                     2                                               \
  |     1            3*x                12                   9*x        |
2*|----------- + ----------- + -------------------- + ------------------|
  |        3/2           5/2           3/2                     2        |
  |/     2\      /     2\      /     2\        2      /      2\         |
  \\1 - x /      \1 - x /      \1 - x /   *acos (x)   \-1 + x / *acos(x)/
-------------------------------------------------------------------------
                                     3                                   
                                 acos (x)                                
$$\frac{2 \cdot \left(\frac{9 x}{\left(x^{2} - 1\right)^{2} \operatorname{acos}{\left(x \right)}} + \frac{3 x^{2}}{\left(- x^{2} + 1\right)^{\frac{5}{2}}} + \frac{1}{\left(- x^{2} + 1\right)^{\frac{3}{2}}} + \frac{12}{\left(- x^{2} + 1\right)^{\frac{3}{2}} \operatorname{acos}^{2}{\left(x \right)}}\right)}{\operatorname{acos}^{3}{\left(x \right)}}$$
The graph
Derivative of 1/arccos^2x