Mister Exam

Derivative of y=sin(tan(sqrt(x)))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   /  ___\\
sin\tan\\/ x //
$$\sin{\left(\tan{\left(\sqrt{x} \right)} \right)}$$
d /   /   /  ___\\\
--\sin\tan\\/ x ///
dx                 
$$\frac{d}{d x} \sin{\left(\tan{\left(\sqrt{x} \right)} \right)}$$
Detail solution
  1. Let .

  2. The derivative of sine is cosine:

  3. Then, apply the chain rule. Multiply by :

    1. Rewrite the function to be differentiated:

    2. Apply the quotient rule, which is:

      and .

      To find :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. Apply the power rule: goes to

        The result of the chain rule is:

      To find :

      1. Let .

      2. The derivative of cosine is negative sine:

      3. Then, apply the chain rule. Multiply by :

        1. Apply the power rule: goes to

        The result of the chain rule is:

      Now plug in to the quotient rule:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
/       2/  ___\\    /   /  ___\\
\1 + tan \\/ x //*cos\tan\\/ x //
---------------------------------
                 ___             
             2*\/ x              
$$\frac{\left(\tan^{2}{\left(\sqrt{x} \right)} + 1\right) \cos{\left(\tan{\left(\sqrt{x} \right)} \right)}}{2 \sqrt{x}}$$
The second derivative [src]
                  /     /   /  ___\\   /       2/  ___\\    /   /  ___\\        /   /  ___\\    /  ___\\
/       2/  ___\\ |  cos\tan\\/ x //   \1 + tan \\/ x //*sin\tan\\/ x //   2*cos\tan\\/ x //*tan\\/ x /|
\1 + tan \\/ x //*|- --------------- - --------------------------------- + ----------------------------|
                  |         3/2                        x                                x              |
                  \        x                                                                           /
--------------------------------------------------------------------------------------------------------
                                                   4                                                    
$$\frac{\left(\tan^{2}{\left(\sqrt{x} \right)} + 1\right) \left(- \frac{\left(\tan^{2}{\left(\sqrt{x} \right)} + 1\right) \sin{\left(\tan{\left(\sqrt{x} \right)} \right)}}{x} + \frac{2 \cos{\left(\tan{\left(\sqrt{x} \right)} \right)} \tan{\left(\sqrt{x} \right)}}{x} - \frac{\cos{\left(\tan{\left(\sqrt{x} \right)} \right)}}{x^{\frac{3}{2}}}\right)}{4}$$
The third derivative [src]
                  /                                     2                                                                                                                                                                                                            \
                  |     /   /  ___\\   /       2/  ___\\     /   /  ___\\        /   /  ___\\    /  ___\     /       2/  ___\\    /   /  ___\\     /       2/  ___\\    /   /  ___\\        2/  ___\    /   /  ___\\     /       2/  ___\\    /   /  ___\\    /  ___\|
/       2/  ___\\ |3*cos\tan\\/ x //   \1 + tan \\/ x // *cos\tan\\/ x //   6*cos\tan\\/ x //*tan\\/ x /   2*\1 + tan \\/ x //*cos\tan\\/ x //   3*\1 + tan \\/ x //*sin\tan\\/ x //   4*tan \\/ x /*cos\tan\\/ x //   6*\1 + tan \\/ x //*sin\tan\\/ x //*tan\\/ x /|
\1 + tan \\/ x //*|----------------- - ---------------------------------- - ---------------------------- + ----------------------------------- + ----------------------------------- + ----------------------------- - ----------------------------------------------|
                  |        5/2                         3/2                                2                                 3/2                                    2                                 3/2                                     3/2                     |
                  \       x                           x                                  x                                 x                                      x                                 x                                       x                        /
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                                                  8                                                                                                                                   
$$\frac{\left(\tan^{2}{\left(\sqrt{x} \right)} + 1\right) \left(\frac{3 \left(\tan^{2}{\left(\sqrt{x} \right)} + 1\right) \sin{\left(\tan{\left(\sqrt{x} \right)} \right)}}{x^{2}} - \frac{6 \cos{\left(\tan{\left(\sqrt{x} \right)} \right)} \tan{\left(\sqrt{x} \right)}}{x^{2}} - \frac{\left(\tan^{2}{\left(\sqrt{x} \right)} + 1\right)^{2} \cos{\left(\tan{\left(\sqrt{x} \right)} \right)}}{x^{\frac{3}{2}}} - \frac{6 \left(\tan^{2}{\left(\sqrt{x} \right)} + 1\right) \sin{\left(\tan{\left(\sqrt{x} \right)} \right)} \tan{\left(\sqrt{x} \right)}}{x^{\frac{3}{2}}} + \frac{4 \cos{\left(\tan{\left(\sqrt{x} \right)} \right)} \tan^{2}{\left(\sqrt{x} \right)}}{x^{\frac{3}{2}}} + \frac{2 \left(\tan^{2}{\left(\sqrt{x} \right)} + 1\right) \cos{\left(\tan{\left(\sqrt{x} \right)} \right)}}{x^{\frac{3}{2}}} + \frac{3 \cos{\left(\tan{\left(\sqrt{x} \right)} \right)}}{x^{\frac{5}{2}}}\right)}{8}$$
The graph
Derivative of y=sin(tan(sqrt(x)))