/ / ___\\ sin\tan\\/ x //
d / / / ___\\\ --\sin\tan\\/ x /// dx
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
Rewrite the function to be differentiated:
Apply the quotient rule, which is:
and .
To find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
Apply the power rule: goes to
The result of the chain rule is:
To find :
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
Apply the power rule: goes to
The result of the chain rule is:
Now plug in to the quotient rule:
The result of the chain rule is:
Now simplify:
The answer is:
/ 2/ ___\\ / / ___\\ \1 + tan \\/ x //*cos\tan\\/ x // --------------------------------- ___ 2*\/ x
/ / / ___\\ / 2/ ___\\ / / ___\\ / / ___\\ / ___\\ / 2/ ___\\ | cos\tan\\/ x // \1 + tan \\/ x //*sin\tan\\/ x // 2*cos\tan\\/ x //*tan\\/ x /| \1 + tan \\/ x //*|- --------------- - --------------------------------- + ----------------------------| | 3/2 x x | \ x / -------------------------------------------------------------------------------------------------------- 4
/ 2 \ | / / ___\\ / 2/ ___\\ / / ___\\ / / ___\\ / ___\ / 2/ ___\\ / / ___\\ / 2/ ___\\ / / ___\\ 2/ ___\ / / ___\\ / 2/ ___\\ / / ___\\ / ___\| / 2/ ___\\ |3*cos\tan\\/ x // \1 + tan \\/ x // *cos\tan\\/ x // 6*cos\tan\\/ x //*tan\\/ x / 2*\1 + tan \\/ x //*cos\tan\\/ x // 3*\1 + tan \\/ x //*sin\tan\\/ x // 4*tan \\/ x /*cos\tan\\/ x // 6*\1 + tan \\/ x //*sin\tan\\/ x //*tan\\/ x /| \1 + tan \\/ x //*|----------------- - ---------------------------------- - ---------------------------- + ----------------------------------- + ----------------------------------- + ----------------------------- - ----------------------------------------------| | 5/2 3/2 2 3/2 2 3/2 3/2 | \ x x x x x x x / ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 8