Mister Exam

Other calculators


arccos(sqrt(2)/x)+1/sqrt(2)*(x*sqrt(x*x-2))

Derivative of arccos(sqrt(2)/x)+1/sqrt(2)*(x*sqrt(x*x-2))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    /  ___\                        
    |\/ 2 |       1       _________
acos|-----| + 1*-----*x*\/ x*x - 2 
    \  x  /       ___              
                \/ 2               
$$1 \cdot \frac{1}{\sqrt{2}} x \sqrt{x x - 2} + \operatorname{acos}{\left(\frac{\sqrt{2}}{x} \right)}$$
  /    /  ___\                        \
d |    |\/ 2 |       1       _________|
--|acos|-----| + 1*-----*x*\/ x*x - 2 |
dx|    \  x  /       ___              |
  \                \/ 2               /
$$\frac{d}{d x} \left(1 \cdot \frac{1}{\sqrt{2}} x \sqrt{x x - 2} + \operatorname{acos}{\left(\frac{\sqrt{2}}{x} \right)}\right)$$
The graph
The first derivative [src]
                                              ___ 
                                          2 \/ 2  
              ___          ___           x *----- 
  _________ \/ 2         \/ 2                 2   
\/ x*x - 2 *----- + ---------------- + -----------
              2             ________     _________
                     2     /     2     \/ x*x - 2 
                    x *   /  1 - --               
                         /        2               
                       \/        x                
$$\frac{\frac{\sqrt{2}}{2} x^{2}}{\sqrt{x x - 2}} + \frac{\sqrt{2}}{2} \sqrt{x x - 2} + \frac{\sqrt{2}}{x^{2} \sqrt{1 - \frac{2}{x^{2}}}}$$
The second derivative [src]
      /                                             3                       \
  ___ |        2                 2                 x               3*x      |
\/ 2 *|- -------------- - ---------------- - -------------- + --------------|
      |             3/2           ________              3/2        _________|
      |   5 /    2 \       3     /     2       /      2\          /       2 |
      |  x *|1 - --|      x *   /  1 - --    2*\-2 + x /      2*\/  -2 + x  |
      |     |     2|           /        2                                   |
      \     \    x /         \/        x                                    /
$$\sqrt{2} \left(- \frac{x^{3}}{2 \left(x^{2} - 2\right)^{\frac{3}{2}}} + \frac{3 x}{2 \sqrt{x^{2} - 2}} - \frac{2}{x^{3} \sqrt{1 - \frac{2}{x^{2}}}} - \frac{2}{x^{5} \left(1 - \frac{2}{x^{2}}\right)^{\frac{3}{2}}}\right)$$
The third derivative [src]
      /                        2                                                                    4     \
  ___ |      3              3*x               6                 12               14              3*x      |
\/ 2 *|-------------- - ------------ + ---------------- + -------------- + -------------- + --------------|
      |     _________            3/2           ________              5/2              3/2              5/2|
      |    /       2    /      2\       4     /     2      8 /    2 \       6 /    2 \        /      2\   |
      |2*\/  -2 + x     \-2 + x /      x *   /  1 - --    x *|1 - --|      x *|1 - --|      2*\-2 + x /   |
      |                                     /        2       |     2|         |     2|                    |
      \                                   \/        x        \    x /         \    x /                    /
$$\sqrt{2} \cdot \left(\frac{3 x^{4}}{2 \left(x^{2} - 2\right)^{\frac{5}{2}}} - \frac{3 x^{2}}{\left(x^{2} - 2\right)^{\frac{3}{2}}} + \frac{3}{2 \sqrt{x^{2} - 2}} + \frac{6}{x^{4} \sqrt{1 - \frac{2}{x^{2}}}} + \frac{14}{x^{6} \left(1 - \frac{2}{x^{2}}\right)^{\frac{3}{2}}} + \frac{12}{x^{8} \left(1 - \frac{2}{x^{2}}\right)^{\frac{5}{2}}}\right)$$
The graph
Derivative of arccos(sqrt(2)/x)+1/sqrt(2)*(x*sqrt(x*x-2))