4 /x - 1\ |-----| \x + 1/
((x - 1)/(x + 1))^4
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
To find :
Differentiate term by term:
The derivative of the constant is zero.
Apply the power rule: goes to
The result is:
Now plug in to the quotient rule:
The result of the chain rule is:
Now simplify:
The answer is:
4
(x - 1) / 4 4*(x - 1)\
--------*(x + 1)*|----- - ---------|
4 |x + 1 2|
(x + 1) \ (x + 1) /
------------------------------------
x - 1
2 / -1 + x\ / 5*(-1 + x)\
4*(-1 + x) *|-1 + ------|*|-3 + ----------|
\ 1 + x / \ 1 + x /
-------------------------------------------
4
(1 + x)
/ / -1 + x\\
| 2 2*(-1 + x)*|-1 + ------||
/ -1 + x\ | 13*(-1 + x) 13*(-1 + x) \ 1 + x /|
8*(-1 + x)*|-1 + ------|*|-3 - ------------ + ----------- - ------------------------|
\ 1 + x / | 2 1 + x 1 + x |
\ (1 + x) /
-------------------------------------------------------------------------------------
4
(1 + x)