Mister Exam

Other calculators


((x-1)/(x+1))^4

Derivative of ((x-1)/(x+1))^4

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
       4
/x - 1\ 
|-----| 
\x + 1/ 
$$\left(\frac{x - 1}{x + 1}\right)^{4}$$
((x - 1)/(x + 1))^4
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Apply the quotient rule, which is:

      and .

      To find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        The result is:

      To find :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        The result is:

      Now plug in to the quotient rule:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
       4                            
(x - 1)          /  4     4*(x - 1)\
--------*(x + 1)*|----- - ---------|
       4         |x + 1           2|
(x + 1)          \         (x + 1) /
------------------------------------
               x - 1                
$$\frac{\frac{\left(x - 1\right)^{4}}{\left(x + 1\right)^{4}} \left(x + 1\right) \left(- \frac{4 \left(x - 1\right)}{\left(x + 1\right)^{2}} + \frac{4}{x + 1}\right)}{x - 1}$$
The second derivative [src]
          2 /     -1 + x\ /     5*(-1 + x)\
4*(-1 + x) *|-1 + ------|*|-3 + ----------|
            \     1 + x / \       1 + x   /
-------------------------------------------
                         4                 
                  (1 + x)                  
$$\frac{4 \left(x - 1\right)^{2} \left(\frac{x - 1}{x + 1} - 1\right) \left(\frac{5 \left(x - 1\right)}{x + 1} - 3\right)}{\left(x + 1\right)^{4}}$$
The third derivative [src]
                         /                                             /     -1 + x\\
                         |                2                 2*(-1 + x)*|-1 + ------||
           /     -1 + x\ |     13*(-1 + x)    13*(-1 + x)              \     1 + x /|
8*(-1 + x)*|-1 + ------|*|-3 - ------------ + ----------- - ------------------------|
           \     1 + x / |              2        1 + x               1 + x          |
                         \       (1 + x)                                            /
-------------------------------------------------------------------------------------
                                              4                                      
                                       (1 + x)                                       
$$\frac{8 \left(x - 1\right) \left(\frac{x - 1}{x + 1} - 1\right) \left(- \frac{13 \left(x - 1\right)^{2}}{\left(x + 1\right)^{2}} - \frac{2 \left(x - 1\right) \left(\frac{x - 1}{x + 1} - 1\right)}{x + 1} + \frac{13 \left(x - 1\right)}{x + 1} - 3\right)}{\left(x + 1\right)^{4}}$$
The graph
Derivative of ((x-1)/(x+1))^4