Mister Exam

Other calculators


x/(e^x+1)

Derivative of x/(e^x+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  x   
------
 x    
E  + 1
$$\frac{x}{e^{x} + 1}$$
x/(E^x + 1)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Apply the power rule: goes to

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of is itself.

      The result is:

    Now plug in to the quotient rule:


The answer is:

The graph
The first derivative [src]
               x  
  1         x*e   
------ - ---------
 x               2
E  + 1   / x    \ 
         \E  + 1/ 
$$- \frac{x e^{x}}{\left(e^{x} + 1\right)^{2}} + \frac{1}{e^{x} + 1}$$
The second derivative [src]
 /      /        x \\    
 |      |     2*e  ||  x 
-|2 + x*|1 - ------||*e  
 |      |         x||    
 \      \    1 + e //    
-------------------------
                2        
        /     x\         
        \1 + e /         
$$- \frac{\left(x \left(1 - \frac{2 e^{x}}{e^{x} + 1}\right) + 2\right) e^{x}}{\left(e^{x} + 1\right)^{2}}$$
The third derivative [src]
 /      /        x         2*x \       x \    
 |      |     6*e       6*e    |    6*e  |  x 
-|3 + x*|1 - ------ + ---------| - ------|*e  
 |      |         x           2|        x|    
 |      |    1 + e    /     x\ |   1 + e |    
 \      \             \1 + e / /         /    
----------------------------------------------
                          2                   
                  /     x\                    
                  \1 + e /                    
$$- \frac{\left(x \left(1 - \frac{6 e^{x}}{e^{x} + 1} + \frac{6 e^{2 x}}{\left(e^{x} + 1\right)^{2}}\right) + 3 - \frac{6 e^{x}}{e^{x} + 1}\right) e^{x}}{\left(e^{x} + 1\right)^{2}}$$
The graph
Derivative of x/(e^x+1)