Mister Exam

Derivative of arccos(4x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
acos(4*x)
$$\operatorname{acos}{\left(4 x \right)}$$
d            
--(acos(4*x))
dx           
$$\frac{d}{d x} \operatorname{acos}{\left(4 x \right)}$$
The graph
The first derivative [src]
     -4       
--------------
   ___________
  /         2 
\/  1 - 16*x  
$$- \frac{4}{\sqrt{- 16 x^{2} + 1}}$$
The second derivative [src]
    -64*x     
--------------
           3/2
/        2\   
\1 - 16*x /   
$$- \frac{64 x}{\left(- 16 x^{2} + 1\right)^{\frac{3}{2}}}$$
The third derivative [src]
    /          2  \
    |      48*x   |
-64*|1 + ---------|
    |            2|
    \    1 - 16*x /
-------------------
              3/2  
   /        2\     
   \1 - 16*x /     
$$- \frac{64 \cdot \left(\frac{48 x^{2}}{- 16 x^{2} + 1} + 1\right)}{\left(- 16 x^{2} + 1\right)^{\frac{3}{2}}}$$
The graph
Derivative of arccos(4x)