The first derivative
[src]
___________
/ 1 |3*x + 1|
3*3 / 1*--- + 1 *sign(1 + 3*x) - -------------------
\/ 3*x 2/3
2 / 1 \
9*x *|1*--- + 1|
\ 3*x /
$$3 \sqrt[3]{1 + 1 \cdot \frac{1}{3 x}} \operatorname{sign}{\left(3 x + 1 \right)} - \frac{\left|{3 x + 1}\right|}{9 x^{2} \left(1 + 1 \cdot \frac{1}{3 x}\right)^{\frac{2}{3}}}$$
The second derivative
[src]
/ / 1 \ \
| |3 - ---------|*|1 + 3*x||
| | / 1\| |
| _________ | x*|3 + -|| |
| / 1 sign(1 + 3*x) \ \ x// |
2*|9*3 / 1 + --- *DiracDelta(1 + 3*x) - ----------------- + -------------------------|
| \/ 3*x 2/3 2/3 |
| 2 / 1 \ 3 / 1 \ |
| 3*x *|1 + ---| 27*x *|1 + ---| |
\ \ 3*x/ \ 3*x/ /
$$2 \cdot \left(9 \sqrt[3]{1 + \frac{1}{3 x}} \delta\left(3 x + 1\right) - \frac{\operatorname{sign}{\left(3 x + 1 \right)}}{3 x^{2} \left(1 + \frac{1}{3 x}\right)^{\frac{2}{3}}} + \frac{\left(3 - \frac{1}{x \left(3 + \frac{1}{x}\right)}\right) \left|{3 x + 1}\right|}{27 x^{3} \left(1 + \frac{1}{3 x}\right)^{\frac{2}{3}}}\right)$$
The third derivative
[src]
/ / 18 5 \ \
| |27 - --------- + -----------|*|1 + 3*x| / 1 \ |
| | / 1\ 2| |3 - ---------|*sign(1 + 3*x)|
| | x*|3 + -| 2 / 1\ | | / 1\| |
| _________ | \ x/ x *|3 + -| | | x*|3 + -|| |
| / 1 3*DiracDelta(1 + 3*x) \ \ x/ / \ \ x// |
2*|27*3 / 1 + --- *DiracDelta(1 + 3*x, 1) - --------------------- - ---------------------------------------- + -----------------------------|
| \/ 3*x 2/3 2/3 2/3 |
| 2 / 1 \ 4 / 1 \ 3 / 1 \ |
| x *|1 + ---| 81*x *|1 + ---| 3*x *|1 + ---| |
\ \ 3*x/ \ 3*x/ \ 3*x/ /
$$2 \cdot \left(27 \sqrt[3]{1 + \frac{1}{3 x}} \delta^{\left( 1 \right)}\left( 3 x + 1 \right) - \frac{3 \delta\left(3 x + 1\right)}{x^{2} \left(1 + \frac{1}{3 x}\right)^{\frac{2}{3}}} + \frac{\left(3 - \frac{1}{x \left(3 + \frac{1}{x}\right)}\right) \operatorname{sign}{\left(3 x + 1 \right)}}{3 x^{3} \left(1 + \frac{1}{3 x}\right)^{\frac{2}{3}}} - \frac{\left(27 - \frac{18}{x \left(3 + \frac{1}{x}\right)} + \frac{5}{x^{2} \left(3 + \frac{1}{x}\right)^{2}}\right) \left|{3 x + 1}\right|}{81 x^{4} \left(1 + \frac{1}{3 x}\right)^{\frac{2}{3}}}\right)$$