Mister Exam

Derivative of (5x-3)/(x+3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
5*x - 3
-------
 x + 3 
5x3x+3\frac{5 x - 3}{x + 3}
(5*x - 3)/(x + 3)
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=5x3f{\left(x \right)} = 5 x - 3 and g(x)=x+3g{\left(x \right)} = x + 3.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Differentiate 5x35 x - 3 term by term:

      1. The derivative of the constant 3-3 is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 55

      The result is: 55

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Differentiate x+3x + 3 term by term:

      1. The derivative of the constant 33 is zero.

      2. Apply the power rule: xx goes to 11

      The result is: 11

    Now plug in to the quotient rule:

    18(x+3)2\frac{18}{\left(x + 3\right)^{2}}


The answer is:

18(x+3)2\frac{18}{\left(x + 3\right)^{2}}

The graph
02468-8-6-4-2-1010-50005000
The first derivative [src]
  5     5*x - 3 
----- - --------
x + 3          2
        (x + 3) 
5x+35x3(x+3)2\frac{5}{x + 3} - \frac{5 x - 3}{\left(x + 3\right)^{2}}
The second derivative [src]
  /     -3 + 5*x\
2*|-5 + --------|
  \      3 + x  /
-----------------
            2    
     (3 + x)     
2(5+5x3x+3)(x+3)2\frac{2 \left(-5 + \frac{5 x - 3}{x + 3}\right)}{\left(x + 3\right)^{2}}
The third derivative [src]
  /    -3 + 5*x\
6*|5 - --------|
  \     3 + x  /
----------------
           3    
    (3 + x)     
6(55x3x+3)(x+3)3\frac{6 \left(5 - \frac{5 x - 3}{x + 3}\right)}{\left(x + 3\right)^{3}}