Mister Exam

Derivative of (1+cscx)/(1-cscx)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
1 + csc(x)
----------
1 - csc(x)
$$\frac{\csc{\left(x \right)} + 1}{- \csc{\left(x \right)} + 1}$$
d /1 + csc(x)\
--|----------|
dx\1 - csc(x)/
$$\frac{d}{d x} \frac{\csc{\left(x \right)} + 1}{- \csc{\left(x \right)} + 1}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Rewrite the function to be differentiated:

      3. Let .

      4. Apply the power rule: goes to

      5. Then, apply the chain rule. Multiply by :

        1. The derivative of sine is cosine:

        The result of the chain rule is:

      The result is:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of cosecant is negative cosecant times cotangent:

        So, the result is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
  cot(x)*csc(x)   (1 + csc(x))*cot(x)*csc(x)
- ------------- - --------------------------
    1 - csc(x)                      2       
                        (1 - csc(x))        
$$- \frac{\cot{\left(x \right)} \csc{\left(x \right)}}{- \csc{\left(x \right)} + 1} - \frac{\left(\csc{\left(x \right)} + 1\right) \cot{\left(x \right)} \csc{\left(x \right)}}{\left(- \csc{\left(x \right)} + 1\right)^{2}}$$
The second derivative [src]
/                              /                     2          \                   \       
|                              |         2      2*cot (x)*csc(x)|                   |       
|                 (1 + csc(x))*|1 + 2*cot (x) - ----------------|        2          |       
|          2                   \                  -1 + csc(x)   /   2*cot (x)*csc(x)|       
|-1 - 2*cot (x) + ----------------------------------------------- + ----------------|*csc(x)
\                                   -1 + csc(x)                       -1 + csc(x)   /       
--------------------------------------------------------------------------------------------
                                        -1 + csc(x)                                         
$$\frac{\left(- 2 \cot^{2}{\left(x \right)} + \frac{2 \cot^{2}{\left(x \right)} \csc{\left(x \right)}}{\csc{\left(x \right)} - 1} + \frac{\left(\csc{\left(x \right)} + 1\right) \left(2 \cot^{2}{\left(x \right)} - \frac{2 \cot^{2}{\left(x \right)} \csc{\left(x \right)}}{\csc{\left(x \right)} - 1} + 1\right)}{\csc{\left(x \right)} - 1} - 1\right) \csc{\left(x \right)}}{\csc{\left(x \right)} - 1}$$
The third derivative [src]
/                             /                     2               /       2   \               2       2   \                                                                         \              
|                             |         2      6*cot (x)*csc(x)   6*\1 + cot (x)/*csc(x)   6*cot (x)*csc (x)|                                /                     2          \       |              
|                (1 + csc(x))*|5 + 6*cot (x) - ---------------- - ---------------------- + -----------------|                                |         2      2*cot (x)*csc(x)|       |              
|                             |                  -1 + csc(x)           -1 + csc(x)                        2 |     /         2   \          3*|1 + 2*cot (x) - ----------------|*csc(x)|              
|         2                   \                                                              (-1 + csc(x))  /   3*\1 + 2*cot (x)/*csc(x)     \                  -1 + csc(x)   /       |              
|5 + 6*cot (x) - -------------------------------------------------------------------------------------------- - ------------------------ - -------------------------------------------|*cot(x)*csc(x)
\                                                        -1 + csc(x)                                                  -1 + csc(x)                          -1 + csc(x)                /              
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                             -1 + csc(x)                                                                                             
$$\frac{\left(6 \cot^{2}{\left(x \right)} - \frac{3 \cdot \left(2 \cot^{2}{\left(x \right)} + 1\right) \csc{\left(x \right)}}{\csc{\left(x \right)} - 1} - \frac{\left(\csc{\left(x \right)} + 1\right) \left(6 \cot^{2}{\left(x \right)} - \frac{6 \cot^{2}{\left(x \right)} \csc{\left(x \right)}}{\csc{\left(x \right)} - 1} + \frac{6 \cot^{2}{\left(x \right)} \csc^{2}{\left(x \right)}}{\left(\csc{\left(x \right)} - 1\right)^{2}} - \frac{6 \left(\cot^{2}{\left(x \right)} + 1\right) \csc{\left(x \right)}}{\csc{\left(x \right)} - 1} + 5\right)}{\csc{\left(x \right)} - 1} - \frac{3 \cdot \left(2 \cot^{2}{\left(x \right)} - \frac{2 \cot^{2}{\left(x \right)} \csc{\left(x \right)}}{\csc{\left(x \right)} - 1} + 1\right) \csc{\left(x \right)}}{\csc{\left(x \right)} - 1} + 5\right) \cot{\left(x \right)} \csc{\left(x \right)}}{\csc{\left(x \right)} - 1}$$
The graph
Derivative of (1+cscx)/(1-cscx)