1 + csc(x) ---------- 1 - csc(x)
d /1 + csc(x)\ --|----------| dx\1 - csc(x)/
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
Rewrite the function to be differentiated:
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
The result is:
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
The derivative of cosecant is negative cosecant times cotangent:
So, the result is:
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
cot(x)*csc(x) (1 + csc(x))*cot(x)*csc(x) - ------------- - -------------------------- 1 - csc(x) 2 (1 - csc(x))
/ / 2 \ \ | | 2 2*cot (x)*csc(x)| | | (1 + csc(x))*|1 + 2*cot (x) - ----------------| 2 | | 2 \ -1 + csc(x) / 2*cot (x)*csc(x)| |-1 - 2*cot (x) + ----------------------------------------------- + ----------------|*csc(x) \ -1 + csc(x) -1 + csc(x) / -------------------------------------------------------------------------------------------- -1 + csc(x)
/ / 2 / 2 \ 2 2 \ \ | | 2 6*cot (x)*csc(x) 6*\1 + cot (x)/*csc(x) 6*cot (x)*csc (x)| / 2 \ | | (1 + csc(x))*|5 + 6*cot (x) - ---------------- - ---------------------- + -----------------| | 2 2*cot (x)*csc(x)| | | | -1 + csc(x) -1 + csc(x) 2 | / 2 \ 3*|1 + 2*cot (x) - ----------------|*csc(x)| | 2 \ (-1 + csc(x)) / 3*\1 + 2*cot (x)/*csc(x) \ -1 + csc(x) / | |5 + 6*cot (x) - -------------------------------------------------------------------------------------------- - ------------------------ - -------------------------------------------|*cot(x)*csc(x) \ -1 + csc(x) -1 + csc(x) -1 + csc(x) / ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- -1 + csc(x)