Mister Exam

Derivative of 3sin^2x-sin^3x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     2         3   
3*sin (x) - sin (x)
sin3(x)+3sin2(x)- \sin^{3}{\left(x \right)} + 3 \sin^{2}{\left(x \right)}
d /     2         3   \
--\3*sin (x) - sin (x)/
dx                     
ddx(sin3(x)+3sin2(x))\frac{d}{d x} \left(- \sin^{3}{\left(x \right)} + 3 \sin^{2}{\left(x \right)}\right)
Detail solution
  1. Differentiate sin3(x)+3sin2(x)- \sin^{3}{\left(x \right)} + 3 \sin^{2}{\left(x \right)} term by term:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let u=sin(x)u = \sin{\left(x \right)}.

      2. Apply the power rule: u2u^{2} goes to 2u2 u

      3. Then, apply the chain rule. Multiply by ddxsin(x)\frac{d}{d x} \sin{\left(x \right)}:

        1. The derivative of sine is cosine:

          ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

        The result of the chain rule is:

        2sin(x)cos(x)2 \sin{\left(x \right)} \cos{\left(x \right)}

      So, the result is: 6sin(x)cos(x)6 \sin{\left(x \right)} \cos{\left(x \right)}

    2. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let u=sin(x)u = \sin{\left(x \right)}.

      2. Apply the power rule: u3u^{3} goes to 3u23 u^{2}

      3. Then, apply the chain rule. Multiply by ddxsin(x)\frac{d}{d x} \sin{\left(x \right)}:

        1. The derivative of sine is cosine:

          ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

        The result of the chain rule is:

        3sin2(x)cos(x)3 \sin^{2}{\left(x \right)} \cos{\left(x \right)}

      So, the result is: 3sin2(x)cos(x)- 3 \sin^{2}{\left(x \right)} \cos{\left(x \right)}

    The result is: 3sin2(x)cos(x)+6sin(x)cos(x)- 3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + 6 \sin{\left(x \right)} \cos{\left(x \right)}

  2. Now simplify:

    3(2sin(x))sin(x)cos(x)3 \cdot \left(2 - \sin{\left(x \right)}\right) \sin{\left(x \right)} \cos{\left(x \right)}


The answer is:

3(2sin(x))sin(x)cos(x)3 \cdot \left(2 - \sin{\left(x \right)}\right) \sin{\left(x \right)} \cos{\left(x \right)}

The graph
02468-8-6-4-2-1010-1010
The first derivative [src]
       2                            
- 3*sin (x)*cos(x) + 6*cos(x)*sin(x)
3sin2(x)cos(x)+6sin(x)cos(x)- 3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + 6 \sin{\left(x \right)} \cos{\left(x \right)}
The second derivative [src]
  /   3           2           2           2          \
3*\sin (x) - 2*sin (x) + 2*cos (x) - 2*cos (x)*sin(x)/
3(sin3(x)2sin(x)cos2(x)2sin2(x)+2cos2(x))3 \left(\sin^{3}{\left(x \right)} - 2 \sin{\left(x \right)} \cos^{2}{\left(x \right)} - 2 \sin^{2}{\left(x \right)} + 2 \cos^{2}{\left(x \right)}\right)
The third derivative [src]
  /                 2           2   \       
3*\-8*sin(x) - 2*cos (x) + 7*sin (x)/*cos(x)
3(7sin2(x)2cos2(x)8sin(x))cos(x)3 \cdot \left(7 \sin^{2}{\left(x \right)} - 2 \cos^{2}{\left(x \right)} - 8 \sin{\left(x \right)}\right) \cos{\left(x \right)}
The graph
Derivative of 3sin^2x-sin^3x