Mister Exam

Derivative of lnx/ln4

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(x)
------
log(4)
log(x)log(4)\frac{\log{\left(x \right)}}{\log{\left(4 \right)}}
d /log(x)\
--|------|
dx\log(4)/
ddxlog(x)log(4)\frac{d}{d x} \frac{\log{\left(x \right)}}{\log{\left(4 \right)}}
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. The derivative of log(x)\log{\left(x \right)} is 1x\frac{1}{x}.

    So, the result is: 1xlog(4)\frac{1}{x \log{\left(4 \right)}}


The answer is:

1xlog(4)\frac{1}{x \log{\left(4 \right)}}

The graph
02468-8-6-4-2-1010-2020
The first derivative [src]
   1    
--------
x*log(4)
1xlog(4)\frac{1}{x \log{\left(4 \right)}}
The second derivative [src]
   -1    
---------
 2       
x *log(4)
1x2log(4)- \frac{1}{x^{2} \log{\left(4 \right)}}
The third derivative [src]
    2    
---------
 3       
x *log(4)
2x3log(4)\frac{2}{x^{3} \log{\left(4 \right)}}
The graph
Derivative of lnx/ln4