Mister Exam

Other calculators

5х-7у=9; 6х+5у=-16

v

The graph:

from to

from to

The solution

You have entered [src]
5*x - 7*y = 9
5x7y=95 x - 7 y = 9
6*x + 5*y = -16
6x+5y=166 x + 5 y = -16
6*x + 5*y = -16
Detail solution
Given the system of equations
5x7y=95 x - 7 y = 9
6x+5y=166 x + 5 y = -16

Let's express from equation 1 x
5x7y=95 x - 7 y = 9
Let's move the summand with the variable y from the left part to the right part performing the sign change
5x=7y+95 x = 7 y + 9
5x=7y+95 x = 7 y + 9
Let's divide both parts of the equation by the multiplier of x
5x5=7y+95\frac{5 x}{5} = \frac{7 y + 9}{5}
x=7y5+95x = \frac{7 y}{5} + \frac{9}{5}
Let's try the obtained element x to 2-th equation
6x+5y=166 x + 5 y = -16
We get:
5y+6(7y5+95)=165 y + 6 \left(\frac{7 y}{5} + \frac{9}{5}\right) = -16
67y5+545=16\frac{67 y}{5} + \frac{54}{5} = -16
We move the free summand 54/5 from the left part to the right part performing the sign change
67y5=16545\frac{67 y}{5} = -16 - \frac{54}{5}
67y5=1345\frac{67 y}{5} = - \frac{134}{5}
Let's divide both parts of the equation by the multiplier of y
675y675=1345675\frac{\frac{67}{5} y}{\frac{67}{5}} = - \frac{134}{5 \frac{67}{5}}
y=2y = -2
Because
x=7y5+95x = \frac{7 y}{5} + \frac{9}{5}
then
x=(2)75+95x = \frac{\left(-2\right) 7}{5} + \frac{9}{5}
x=1x = -1

The answer:
x=1x = -1
y=2y = -2
Rapid solution
x1=1x_{1} = -1
=
1-1
=
-1

y1=2y_{1} = -2
=
2-2
=
-2
Gaussian elimination
Given the system of equations
5x7y=95 x - 7 y = 9
6x+5y=166 x + 5 y = -16

We give the system of equations to the canonical form
5x7y=95 x - 7 y = 9
6x+5y=166 x + 5 y = -16
Rewrite the system of linear equations as the matrix form
[5796516]\left[\begin{matrix}5 & -7 & 9\\6 & 5 & -16\end{matrix}\right]
In 1 -th column
[56]\left[\begin{matrix}5\\6\end{matrix}\right]
let’s convert all the elements, except
1 -th element into zero.
- To do this, let’s take 1 -th line
[579]\left[\begin{matrix}5 & -7 & 9\end{matrix}\right]
,
and subtract it from other lines:
From 2 -th line. Let’s subtract it from this line:
[6565542516695]=[06751345]\left[\begin{matrix}6 - \frac{5 \cdot 6}{5} & 5 - - \frac{42}{5} & -16 - \frac{6 \cdot 9}{5}\end{matrix}\right] = \left[\begin{matrix}0 & \frac{67}{5} & - \frac{134}{5}\end{matrix}\right]
you get
[57906751345]\left[\begin{matrix}5 & -7 & 9\\0 & \frac{67}{5} & - \frac{134}{5}\end{matrix}\right]
In 2 -th column
[7675]\left[\begin{matrix}-7\\\frac{67}{5}\end{matrix}\right]
let’s convert all the elements, except
2 -th element into zero.
- To do this, let’s take 2 -th line
[06751345]\left[\begin{matrix}0 & \frac{67}{5} & - \frac{134}{5}\end{matrix}\right]
,
and subtract it from other lines:
From 1 -th line. Let’s subtract it from this line:
[5(35)0677(35)67567914]=[505]\left[\begin{matrix}5 - \frac{\left(-35\right) 0}{67} & -7 - \frac{\left(-35\right) 67}{5 \cdot 67} & 9 - - -14\end{matrix}\right] = \left[\begin{matrix}5 & 0 & -5\end{matrix}\right]
you get
[50506751345]\left[\begin{matrix}5 & 0 & -5\\0 & \frac{67}{5} & - \frac{134}{5}\end{matrix}\right]

It is almost ready, all we have to do is to find variables, solving the elementary equations:
5x1+5=05 x_{1} + 5 = 0
67x25+1345=0\frac{67 x_{2}}{5} + \frac{134}{5} = 0
We get the answer:
x1=1x_{1} = -1
x2=2x_{2} = -2
Cramer's rule
5x7y=95 x - 7 y = 9
6x+5y=166 x + 5 y = -16

We give the system of equations to the canonical form
5x7y=95 x - 7 y = 9
6x+5y=166 x + 5 y = -16
Rewrite the system of linear equations as the matrix form
[5x17x26x1+5x2]=[916]\left[\begin{matrix}5 x_{1} - 7 x_{2}\\6 x_{1} + 5 x_{2}\end{matrix}\right] = \left[\begin{matrix}9\\-16\end{matrix}\right]
- this is the system of equations that has the form
A*x = B

Let´s find a solution of this matrix equations using Cramer´s rule:

Since the determinant of the matrix:
A=det([5765])=67A = \operatorname{det}{\left(\left[\begin{matrix}5 & -7\\6 & 5\end{matrix}\right] \right)} = 67
, then
The root xi is obtained by dividing the determinant of the matrix Ai. by the determinant of the matrix A.
( Ai we get it by replacement in the matrix A i-th column with column B )
x1=det([97165])67=1x_{1} = \frac{\operatorname{det}{\left(\left[\begin{matrix}9 & -7\\-16 & 5\end{matrix}\right] \right)}}{67} = -1
x2=det([59616])67=2x_{2} = \frac{\operatorname{det}{\left(\left[\begin{matrix}5 & 9\\6 & -16\end{matrix}\right] \right)}}{67} = -2
Numerical answer [src]
x1 = -1.0
y1 = -2.0
x1 = -1.0
y1 = -2.0