Given the system of equations
$$3 x - 2 y = 7$$
$$- 4 x + 3 y = -7$$
Let's express from equation 1 x
$$3 x - 2 y = 7$$
Let's move the summand with the variable y from the left part to the right part performing the sign change
$$3 x = 2 y + 7$$
$$3 x = 2 y + 7$$
Let's divide both parts of the equation by the multiplier of x
$$\frac{3 x}{3} = \frac{2 y + 7}{3}$$
$$x = \frac{2 y}{3} + \frac{7}{3}$$
Let's try the obtained element x to 2-th equation
$$- 4 x + 3 y = -7$$
We get:
$$3 y - 4 \left(\frac{2 y}{3} + \frac{7}{3}\right) = -7$$
$$\frac{y}{3} - \frac{28}{3} = -7$$
We move the free summand -28/3 from the left part to the right part performing the sign change
$$\frac{y}{3} = -7 + \frac{28}{3}$$
$$\frac{y}{3} = \frac{7}{3}$$
Let's divide both parts of the equation by the multiplier of y
/y\
|-|
\3/ 7
--- = -----
1/3 3*1/3
$$y = 7$$
Because
$$x = \frac{2 y}{3} + \frac{7}{3}$$
then
$$x = \frac{7}{3} + \frac{2 \cdot 7}{3}$$
$$x = 7$$
The answer:
$$x = 7$$
$$y = 7$$