Mister Exam

Other calculators


0.5^(n)

Sum of series 0.5^(n)



=

The solution

You have entered [src]
  oo     
 ___     
 \  `    
  \    -n
  /   2  
 /__,    
n = 1    
n=1(12)n\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^{n}
Sum((1/2)^n, (n, 1, oo))
The radius of convergence of the power series
Given number:
(12)n\left(\frac{1}{2}\right)^{n}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=1a_{n} = 1
and
x0=2x_{0} = -2
,
d=1d = -1
,
c=0c = 0
then
1R=~(2+limn1)\frac{1}{R} = \tilde{\infty} \left(-2 + \lim_{n \to \infty} 1\right)
Let's take the limit
we find
False

R=0R = 0
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.50.01.5
The answer [src]
1
11
1
Numerical answer [src]
1.00000000000000000000000000000
1.00000000000000000000000000000
The graph
Sum of series 0.5^(n)

    Examples of finding the sum of a series