Mister Exam

Other calculators

Sum of series z^(n+1)/factorial(n+1)



=

The solution

You have entered [src]
  oo          
____          
\   `         
 \      n + 1 
  \    z      
  /   --------
 /    (n + 1)!
/___,         
n = 1         
$$\sum_{n=1}^{\infty} \frac{z^{n + 1}}{\left(n + 1\right)!}$$
Sum(z^(n + 1)/factorial(n + 1), (n, 1, oo))
The answer [src]
   /              z\
 2 |-2 - 2*z   2*e |
z *|-------- + ----|
   |    2        2 |
   \   z        z  /
--------------------
         2          
$$\frac{z^{2} \left(\frac{- 2 z - 2}{z^{2}} + \frac{2 e^{z}}{z^{2}}\right)}{2}$$
z^2*((-2 - 2*z)/z^2 + 2*exp(z)/z^2)/2

    Examples of finding the sum of a series