Mister Exam

Other calculators

Sum of series y-cos(k*x)^3



=

The solution

You have entered [src]
  oo                 
 ___                 
 \  `                
  \   /       3     \
  /   \y - cos (k*x)/
 /__,                
n = 1                
$$\sum_{n=1}^{\infty} \left(y - \cos^{3}{\left(k x \right)}\right)$$
Sum(y - cos(k*x)^3, (n, 1, oo))
The radius of convergence of the power series
Given number:
$$y - \cos^{3}{\left(k x \right)}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = y - \cos^{3}{\left(k x \right)}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty} 1$$
Let's take the limit
we find
True

False
The answer [src]
   /       3     \
oo*\y - cos (k*x)/
$$\infty \left(y - \cos^{3}{\left(k x \right)}\right)$$
oo*(y - cos(k*x)^3)

    Examples of finding the sum of a series