Mister Exam

Other calculators

  • How to use it?

  • Sum of series:
  • 5^n 5^n
  • 24/((5-3n)(2-3n)) 24/((5-3n)(2-3n))
  • 0.5^n 0.5^n
  • (-1)/(2n-1)! (-1)/(2n-1)!
  • Identical expressions

  • (xln(x)sin(x))/(x^ six - one)
  • (xln(x) sinus of (x)) divide by (x to the power of 6 minus 1)
  • (xln(x) sinus of (x)) divide by (x to the power of six minus one)
  • (xln(x)sin(x))/(x6-1)
  • xlnxsinx/x6-1
  • (xln(x)sin(x))/(x⁶-1)
  • xlnxsinx/x^6-1
  • (xln(x)sin(x)) divide by (x^6-1)
  • Similar expressions

  • (xln(x)sin(x))/(x^6+1)
  • (xln(x)sinx)/(x^6-1)

Sum of series (xln(x)sin(x))/(x^6-1)



=

The solution

You have entered [src]
  oo                 
____                 
\   `                
 \    x*log(x)*sin(x)
  \   ---------------
  /         6        
 /         x  - 1    
/___,                
n = 1                
n=1xlog(x)sin(x)x61\sum_{n=1}^{\infty} \frac{x \log{\left(x \right)} \sin{\left(x \right)}}{x^{6} - 1}
Sum(((x*log(x))*sin(x))/(x^6 - 1), (n, 1, oo))
The radius of convergence of the power series
Given number:
xlog(x)sin(x)x61\frac{x \log{\left(x \right)} \sin{\left(x \right)}}{x^{6} - 1}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=xlog(x)sin(x)x61a_{n} = \frac{x \log{\left(x \right)} \sin{\left(x \right)}}{x^{6} - 1}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limn11 = \lim_{n \to \infty} 1
Let's take the limit
we find
True

False
The answer [src]
oo*x*log(x)*sin(x)
------------------
           6      
     -1 + x       
xlog(x)sin(x)x61\frac{\infty x \log{\left(x \right)} \sin{\left(x \right)}}{x^{6} - 1}
oo*x*log(x)*sin(x)/(-1 + x^6)

    Examples of finding the sum of a series