Mister Exam

Other calculators

  • How to use it?

  • Sum of series:
  • x^n/((3^n*n))
  • 8760 8760
  • -1/n^2 -1/n^2
  • (-1)^k*(k-7)/(2*factorial(n-k))
  • Identical expressions

  • x^n/((three ^n*n))
  • x to the power of n divide by ((3 to the power of n multiply by n))
  • x to the power of n divide by ((three to the power of n multiply by n))
  • xn/((3n*n))
  • xn/3n*n
  • x^n/((3^nn))
  • xn/((3nn))
  • xn/3nn
  • x^n/3^nn
  • x^n divide by ((3^n*n))

Sum of series x^n/((3^n*n))



=

The solution

You have entered [src]
  oo      
____      
\   `     
 \      n 
  \    x  
   )  ----
  /    n  
 /    3 *n
/___,     
n = 1     
$$\sum_{n=1}^{\infty} \frac{x^{n}}{3^{n} n}$$
Sum(x^n/((3^n*n)), (n, 1, oo))
The answer [src]
/    /    x\                          
|-log|1 - -|   for And(x >= -3, x < 3)
|    \    3/                          
|                                     
|  oo                                 
|____                                 
<\   `                                
| \     -n  n                         
|  \   3  *x                          
|  /   ------         otherwise       
| /      n                            
|/___,                                
\n = 1                                
$$\begin{cases} - \log{\left(1 - \frac{x}{3} \right)} & \text{for}\: x \geq -3 \wedge x < 3 \\\sum_{n=1}^{\infty} \frac{3^{- n} x^{n}}{n} & \text{otherwise} \end{cases}$$
Piecewise((-log(1 - x/3), (x >= -3)∧(x < 3)), (Sum(3^(-n)*x^n/n, (n, 1, oo)), True))

    Examples of finding the sum of a series