Mister Exam

Other calculators

Sum of series x^(2n)/n!



=

The solution

You have entered [src]
  oo      
____      
\   `     
 \     2*n
  \   x   
  /   ----
 /     n! 
/___,     
n = 1     
$$\sum_{n=1}^{\infty} \frac{x^{2 n}}{n!}$$
Sum(x^(2*n)/factorial(n), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{x^{2 n}}{n!}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{1}{n!}$$
and
$$x_{0} = 0$$
,
$$d = 2$$
,
$$c = 1$$
then
$$R^{2} = \lim_{n \to \infty} \left|{\frac{\left(n + 1\right)!}{n!}}\right|$$
Let's take the limit
we find
$$R^{2} = \infty$$
$$R = \infty$$
The answer [src]
   /        / 2\\
   |        \x /|
 2 |  1    e    |
x *|- -- + -----|
   |   2      2 |
   \  x      x  /
$$x^{2} \left(\frac{e^{x^{2}}}{x^{2}} - \frac{1}{x^{2}}\right)$$
x^2*(-1/x^2 + exp(x^2)/x^2)

    Examples of finding the sum of a series