oo ____ \ ` \ n \ (x + 1) ) -------- / n / 3 /___, n = 1
Sum((x + 1)^n/3^n, (n, 1, oo))
/ 1 x | - + - | 3 3 |1 x| | ----- for |- + -| < 1 | 2 x |3 3| | - - - | 3 3 < | oo | ___ | \ ` | \ -n n | / 3 *(1 + x) otherwise | /__, \n = 1
Piecewise(((1/3 + x/3)/(2/3 - x/3), |1/3 + x/3| < 1), (Sum(3^(-n)*(1 + x)^n, (n, 1, oo)), True))
x^n/n
(x-1)^n
1/2^(n!)
n^2/n!
x^n/n!
k!/(n!*(n+k)!)
csc(n)^2/n^3
1/n^2
1/n^4
1/n^6
1/n
(-1)^n
(-1)^(n + 1)/n
(n + 2)*(-1)^(n - 1)
(3*n - 1)/(-5)^n
(-1)^(n - 1)*n/(6*n - 5)
(-1)^(n + 1)/n*x^n
(3*n - 1)/(-5)^n