Mister Exam

Other calculators

  • How to use it?

  • Sum of series:
  • (n+1)/5^n (n+1)/5^n
  • n^2*sin(5/(3^n)) n^2*sin(5/(3^n))
  • n*2^n n*2^n
  • n^(1/n) n^(1/n)
  • Identical expressions

  • (x+ one)^n/ three ^n
  • (x plus 1) to the power of n divide by 3 to the power of n
  • (x plus one) to the power of n divide by three to the power of n
  • (x+1)n/3n
  • x+1n/3n
  • x+1^n/3^n
  • (x+1)^n divide by 3^n
  • Similar expressions

  • (x-1)^n/3^n

Sum of series (x+1)^n/3^n



=

The solution

You have entered [src]
  oo          
____          
\   `         
 \           n
  \   (x + 1) 
   )  --------
  /       n   
 /       3    
/___,         
n = 1         
$$\sum_{n=1}^{\infty} \frac{\left(x + 1\right)^{n}}{3^{n}}$$
Sum((x + 1)^n/3^n, (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{\left(x + 1\right)^{n}}{3^{n}}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = 3^{- n}$$
and
$$x_{0} = -1$$
,
$$d = 1$$
,
$$c = 1$$
then
$$R = -1 + \lim_{n \to \infty}\left(3^{- n} 3^{n + 1}\right)$$
Let's take the limit
we find
$$R = 2$$
The answer [src]
/      1   x                        
|      - + -                        
|      3   3             |1   x|    
|      -----         for |- + -| < 1
|      2   x             |3   3|    
|      - - -                        
|      3   3                        
<                                   
|  oo                               
| ___                               
| \  `                              
|  \    -n        n                 
|  /   3  *(1 + x)      otherwise   
| /__,                              
\n = 1                              
$$\begin{cases} \frac{\frac{x}{3} + \frac{1}{3}}{\frac{2}{3} - \frac{x}{3}} & \text{for}\: \left|{\frac{x}{3} + \frac{1}{3}}\right| < 1 \\\sum_{n=1}^{\infty} 3^{- n} \left(x + 1\right)^{n} & \text{otherwise} \end{cases}$$
Piecewise(((1/3 + x/3)/(2/3 - x/3), |1/3 + x/3| < 1), (Sum(3^(-n)*(1 + x)^n, (n, 1, oo)), True))

    Examples of finding the sum of a series