Mister Exam

Other calculators

Sum of series x*y*z



=

The solution

You have entered [src]
  oo       
 __        
 \ `       
  )   x*y*z
 /_,       
n = 1      
n=1zxy\sum_{n=1}^{\infty} z x y
Sum((x*y)*z, (n, 1, oo))
The radius of convergence of the power series
Given number:
zxyz x y
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=xyza_{n} = x y z
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limn11 = \lim_{n \to \infty} 1
Let's take the limit
we find
True

False
The answer [src]
oo*x*y*z
xyz\infty x y z
oo*x*y*z

    Examples of finding the sum of a series