Mister Exam

Other calculators


(x-7)^3

Sum of series (x-7)^3



=

The solution

You have entered [src]
  oo          
 ___          
 \  `         
  \          3
  /   (x - 7) 
 /__,         
x = 1         
x=1(x7)3\sum_{x=1}^{\infty} \left(x - 7\right)^{3}
Sum((x - 7)^3, (x, 1, oo))
The radius of convergence of the power series
Given number:
(x7)3\left(x - 7\right)^{3}
It is a series of species
ax(cxx0)dxa_{x} \left(c x - x_{0}\right)^{d x}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limxaxax+1cR^{d} = \frac{x_{0} + \lim_{x \to \infty} \left|{\frac{a_{x}}{a_{x + 1}}}\right|}{c}
In this case
ax=(x7)3a_{x} = \left(x - 7\right)^{3}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limx((x7)2x71(x6)3)1 = \lim_{x \to \infty}\left(\left(x - 7\right)^{2} \left|{x - 7}\right| \left|{\frac{1}{\left(x - 6\right)^{3}}}\right|\right)
Let's take the limit
we find
True

False
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.50-500
Numerical answer
The series diverges
The graph
Sum of series (x-7)^3

    Examples of finding the sum of a series